
This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under agreement No 101016834. The content of this document reflects only the author's view and the European
Commission is not responsible for any use that may be made of the information it contains.
The document is the property of the HosmartAI consortium and shall not be distributed or reproduced without the approval
of the HosmartAI Project Coordination Team. Find us at www.hosmartai.eu.

Project Acronym: HosmartAI

Grant Agreement number: 101016834 (H2020-DT-2020-1 – Innovation Action)

Project Full Title: Hospital Smart development based on AI

DELIVERABLE

D4.2 – Platform Architecture Design and Open APIs –
Second version

Dissemination level: PU -Public

Type of deliverable: R -Report

Contractual date of delivery: 31 January 2023

Deliverable leader: ITCL

Status - version, date: Final – v1.0, 2023-01-31

Keywords: Platform architecture, Open APIs

This project has received
funding from the European
Union’s Horizon 2020
research and innovation
programme under grant
agreement No 101016834

http://www.hosmartai.eu/

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 2

Executive Summary
This document presents the second version of the HosmartAI Platform Architecture and Open

APIs. The first version of the HosmartAI architecture from D4.1 are analysed, identifying all

the possible changes in the implementation, communication between pilots or internal

elements, and transforming the new requirements into elements to be added to the new

version of the architecture.

Considering that in the future it will be necessary to analyse the data inputs and outputs of

each pilot to develop a common API to standardise the flow of information between the pilots

and the platform, several tools have been studied to perform this function.

This deliverable also serves as documentation of all the tools to generate the necessary

OpenAPIs, which in the next phase will be needed to finish linking all the elements that make

up the architecture.

With this task clear, the architecture has been modified to meet emerging needs. An

important change has been the inclusion of Nexus to manage the repositories because as time

goes by, the number of tools and elements used is increasing and a powerful tool is needed

to manage all the elements.

Changes have also been made to the security of the whole system, including new tools to

increase the overall security level.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 3

Deliverable leader: Sergio Chico, Daniel Lozano (ITCL)

Contributors:

Sergio Chico, Daniel Lozano (ITCL)

Pauline Loygue, Khaldoun Al Agha, Guy Pujolle (GC)

Vasilis Charisis, Stelios Hadjidimitriou, Georgios Apostolidis, Ioannis

Dimaridis (AUTH)

Axel Kuhn, Gregorio Meyer, Luca Gilardi (EXYS)

Makis Karadimas (INTRA)

Reviewers:
Manos Georgoudakis (TMA)

Oliver Brinkmann (ETHZ)

Approved by: Athanasios Poulakidas, Irene Diamantopoulou (INTRA)

Document History

Version Date Contributor(s) Description

0.1 2022-02-24 Daniel Lozano (ITCL) Document creation

0.2 2022-07-15 Sergio Chico (ITCL) Open API section

0.3 2022-09-18 Daniel Lozano (ITCL) New components section

0.4 2022-10-24 Sergio Chico (ITCL) Section assignment

0.5 2022-12-27 Sergio Chico (ITCL)
Daniel Lozano (ITCL)
Adrián Gil (ITCL)

Chapter 2 (Short definition of platforms)
Chapter 3 (OpenAPI generators)

0.6 2023-01-09 Pauline Loygue (GC)
Khaldoun Al Agha (GC)
Guy Pujolle (GC)

Router specification

0.7 2023-01-10 Axel Kuhn (EXYS) Gregorio
Meyer (EXYS) Luca Gilardi
(EXYS)

Section 4.2.2 Security VM update

0.8 2023-01-11 Daniel Lozano (ITCL)
Sergio Chico (ITCL)

Format and section fixing review

0.9 2023-01-18 Daniel Lozano (ITCL)
Sergio Chico (ITCL)

Fix review issues noted by ETHZ

0.10 2023-01-23 Daniel Lozano (ITCL) Fix review issues noted by TMA

1.0 2023-01-31 INTRA QA and creation of the final submitted
version

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 4

Table of Contents
Executive Summary .. 2

Table of Contents ... 4

List of Figures ... 5

List of Tables .. 7

Definitions, Acronyms and Abbreviations ... 8

 Introduction ... 9

1.1 Project Information ... 9

1.2 Document Scope ... 11

1.3 Document Structure .. 11

 Integrated Open Platforms .. 12

2.1 Digital Platforms .. 12

2.1.1 Acumos AI Platform ... 12

2.1.2 Apache Maven ... 12

2.1.3 Apache Camel and Spring Boot .. 14

2.1.4 Discourse .. 15

2.1.5 Docker .. 16

2.1.6 GreenSoft ... 18

2.1.7 HAPI-FHIR Platform .. 20

2.1.8 JupyterHub ... 23

2.1.9 Keycloak ... 24

2.1.10 Sentry ... 26

2.1.11 SonarQube ... 27

2.1.12 Sonatype Nexus OSS .. 29

2.1.13 Spark .. 30

2.1.14 Swagger .. 31

2.2 Physical Platforms ... 32

2.2.1 Arduino .. 33

2.2.2 Capsule Endoscopy System .. 33

2.2.3 Clarius PA HD Scanner ... 33

2.2.4 MagnoFlush .. 34

2.2.5 Maxim 32660 ... 34

2.2.6 Navion (Magnebotix) ... 35

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 5

2.2.7 Pepper Robot ... 36

2.2.8 Smart Digital Monitors ... 39

2.2.9 Gradior Management System and APP Gradior .. 41

2.2.10 VIMAR View Wireless system .. 43

2.2.11 Windows and Android Tablets, Smartphones, for View VIMAR APP and iMat. 47

2.2.12 YOI-6 router (embedded blockchain node) - SBC with Wi-Fi or 4G interfaces.. 47

 OpenAPI Specification .. 49

3.1 Tools for managing OpenAPIs ... 49

3.1.1 Generators ... 49

3.1.2 GUI Editors ... 61

 Updated HosmartAI Architecture Design .. 64

4.1 Previous version .. 64

4.2 New elements ... 64

4.2.1 Nexus repository .. 65

4.2.2 Security VM .. 66

4.3 Updated elements ... 67

4.3.1 KeyCloak implementation .. 67

4.4 New version ... 67

 Conclusion .. 68

 References ... 69

List of Figures
Figure 1: Acumos architecture. .. 12

Figure 2: CLI interface for the Maven deployment & implementation in pilot 5. 13

Figure 3: example of POM file in Pilot 5. ... 13

Figure 4: Generic approach to the Apache Camel Spring Boot. .. 14

Figure 5: CLI of Apache Camel Spring Boot implementation for Pilot 5. 15

Figure 6: Discourse screen. .. 16

Figure 7: Docker components. ... 17

Figure 8: Dockerfile example. .. 17

Figure 9: Dockerfile implementation outline for Pilot 5. ... 18

Figure 10: HAPI FHHIR process. ... 20

Figure 11: HAPI FHIR JPA Architecture used in Pilot 5. .. 21

Figure 12: UM’s HAPI FHIR implementation in Pilot 5. .. 22

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 6

Figure 13: Dashboards used to visualize the clinical and data collected in Pilot 5. 23

Figure 14: Jupyter example. ... 24

Figure 15: Login screen. ... 25

Figure 16: HHub login. ... 25

Figure 17: Sentry dashboard. ... 27

Figure 18: Issues navigator. ... 28

Figure 19: SonarQube UI with project analysis.. 29

Figure 20: Sonar repository list. ... 29

Figure 21: Nexus integration to Keycloak. ... 30

Figure 22: Nexus Repository Manager UI. ... 30

Figure 23: Spark architecture. .. 31

Figure 24: Swagger example API. ... 31

Figure 25: Pilot 5 API. ... 32

Figure 26: Arduino board. .. 33

Figure 27: Clarius hardware. .. 34

Figure 28: MagnoFlush hardware. ... 34

Figure 29: Maxim board. .. 35

Figure 30: Navion hardware. ... 35

Figure 31: Pepper use cases. .. 36

Figure 32: Pepper integration. ... 38

Figure 33: Pepper use case. ... 39

Figure 34: Smart monitor hardware. ... 40

Figure 35: Gradior configuration. .. 43

Figure 36: Architecture of the system. .. 44

Figure 37: Examples of the VIMAR App. ... 47

Figure 38: Tool installation from IDE. .. 49

Figure 39: Example of safrs code. .. 50

Figure 40: Safrs autogenerated Swagger. .. 51

Figure 41: Safrs Swagger call example. .. 52

Figure 42: Safrs description swagger example. ... 53

Figure 43: Nelmio api-doc-bundle installation. ... 54

Figure 44: Nelmio api doc yaml. .. 54

Figure 45: bundles.php nelmioApiDocBundle. .. 55

Figure 46: Swagger interface for NelmioApiDocBundle. ... 56

Figure 47: OpenAPI source code for NelmioApiDocBundle. ... 56

Figure 48: Swagger maven plugin main documentation web. .. 57

Figure 49: Swagger endpoint in drf-yasg. .. 59

Figure 50: Swagger endpoint in hapi-swagger. ... 60

Figure 51: Swagger endpoint details for the ‘account’ object in hapi-swagger. 60

Figure 52: Swagger maven plugin API call example. ... 61

Figure 53: Main screen of Apibldr. .. 62

Figure 54: Method description. ... 62

Figure 55: OpenAPI source code. ... 63

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 7

Figure 56: Old architecture diagram. ... 64

Figure 57: Nexus repository versions. ... 65

Figure 58: New architecture diagram. ... 67

List of Tables
Table 1: The HosmartAI consortium. ... 10

Table 2: Catalogue of available devices. ... 44

Table 3: YOI router specifications. ... 48

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 8

Definitions, Acronyms and Abbreviations

Acronym/
Abbreviation

Title

API Application Programming Interface

DoA Description of Action

EHR Electronic Health Record

HHub HosmartAI Hub

HL7 Health Level 7

HL-FAIR Health Level 7 – Fast Healthcare Interoperability Resources

KPI Key Performance Indicator

RAF Reference Architecture Framework

SME Subject Matter Expert

WP Work Package

Term Definition

Consortium Group of beneficiaries that have signed the Consortium Agreement
and the Grant Agreement (either directly as Coordinator or
by accession through Form A).

Consortium
Agreement

Contractual document signed by all the beneficiaries (and not the EC),
explaining how the Consortium is managed and works together.

Deliverable
Leader

Responsible for ensuring that the content of the deliverable meets the
required expectations, both from a contractual point of view and in terms
of usage within the project. Is also responsible for ensuring that the
deliverable follows the deliverable process and is delivered on time.

Description of
Action

Annex 1 to the Grant Agreement. It contains information on the work
packages, deliverables, milestones, resources, and costs of the
beneficiaries, as well as a text with a detailed description of the action.
The DoA is made of Part A (structured data collected in web forms and
Workplan tables) and Part B (text document describing the action
elements).

Dissemination EC term for the communication of information to a wide audience.

Grant
Agreement

The contractual document which defines the contractual scope of the
HosmartAI project. It is signed between the EC and the beneficiaries.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 9

 Introduction

1.1 Project Information

 The HosmartAI vision is a strong, efficient, sustainable, and resilient European

Healthcare system benefiting from the capacities to generate an impact of

the technology European Stakeholders (SMEs, Research centers, Digital Hubs,

and Universities).

 The HosmartAI mission is to guarantee the integration of Digital and Robot

technologies in new Healthcare environments and the possibility to analyze

their benefits by providing an environment where digital healthcare tool

providers will be able to design and develop AI solutions as well as a space for

the instantiation and deployment of AI solutions.

HosmartAI will create a common open

Integration Platform with the

necessary tools to facilitate and

measure the benefits of integrating

digital technologies (robotics and AI) in

the healthcare system.

A central hub will offer multifaceted

lasting functionalities (Marketplace,

Co-creation space, Benchmarking) to

healthcare stakeholders, combined

with a collection of methods, tools, and solutions to integrate and deploy AI-enabled

solutions. The Benchmarking tool will promote the adoption in new settings while enabling a

meeting place for technology providers and end-users.

Eight Large-Scale Pilots will implement and evaluate improvements in medical diagnosis,

surgical interventions, prevention and treatment of diseases, and support for rehabilitation

and long-term care in several Hospital and care settings. The project will target different

medical aspects or manifestations such as Cancer (Pilot #1, #2, and #8); Gastrointestinal (GI)

disorders (Pilot #1); cardiovascular diseases (Pilot #1, #4, #,5 and #7); Thoracic Disorders (Pilot

#5); Neurological diseases (Pilot #3); Elderly Care and Neuropsychological Rehabilitation (Pilot

#6); Foetal Growth Restriction (FGR) and Prematurity (Pilot #1).

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 10

To ensure a user-centered

approach, harmonization in

the process (e.g., regarding

ethical aspects,

standardization, and

robustness both from a

technical and social and

healthcare perspective), the

living lab methodology will be employed. HosmartAI will identify the appropriate instruments

(KPI) that measure efficiency without undermining access or quality of care. Liaison and

cooperation activities with relevant stakeholders and open calls will enable ecosystem

building and industrial clustering.

HosmartAI brings together a consortium of leading organizations (3 large enterprises, 8 SMEs,

5 hospitals, 4 universities, 2 research centers and 2 associations – see Table 1) along with

several more committed organizations (Letters of Support provided).

Table 1: The HosmartAI consortium.

Number1 Name Short name
1 (CO) INTRASOFT INTERNATIONAL SA INTRA

1.1 (TP) INTRASOFT INTERNATIONAL SA INTRA-LU

2 PHILIPS MEDICAL SYSTEMS NEDERLAND BV PHILIPS

3 VIMAR SPA VIMAR

4 GREEN COMMUNICATIONS SAS GC

5 TELEMATIC MEDICAL APPLICATIONS EMPORIA KAI ANAPTIXI
PROIONTON TILIATRIKIS MONOPROSOPIKI ETAIRIA
PERIORISMENIS EYTHINIS

TMA

6 ECLEXYS SAGL EXYS

7 F6S NETWORK IRELAND LIMITED F6S

7.1 (TP) F6S NETWORK LIMITED F6S-UK

8 PHARMECONS EASY ACCESS LTD PhE

9 TERAGLOBUS LATVIA SIA TGLV

10 NINETY ONE GMBH 91

11 EIT HEALTH GERMANY GMBH EIT

12 UNIVERZITETNI KLINICNI CENTER MARIBOR UKCM

13 SAN CAMILLO IRCCS SRL IRCCS

14 SERVICIO MADRILENO DE SALUD SERMAS

14.1 (TP) FUNDACION PARA LA INVESTIGACION BIOMEDICA DEL
HOSPITAL UNIVERSITARIO LA PAZ

FIBHULP

15 CENTRE HOSPITALIER UNIVERSITAIRE DE LIEGE CHUL

16 PANEPISTIMIAKO GENIKO NOSOKOMEIO THESSALONIKIS
AXEPA

AHEPA

17 VRIJE UNIVERSITEIT BRUSSEL VUB

18 ARISTOTELIO PANEPISTIMIO THESSALONIKIS AUTH

19 EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ

20 UNIVERZA V MARIBORU UM

1 CO: Coordinator. TP: linked third party.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 11

Number1 Name Short name
21 INSTITUTO TECNOLÓGICO DE CASTILLA Y LEON ITCL

22 FUNDACION INTRAS INTRAS

23 ASSOCIATION EUROPEAN FEDERATION FORMEDICAL
INFORMATICS

EFMI

24 FEDERATION EUROPEENNE DES HOPITAUX ET DES SOINS DE
SANTE

HOPE

1.2 Document Scope

The deliverable aims to provide the second version of the HosmartAI architecture, based on

all the changes and new necessities, in addition to the analysis of the technical requirements

for each pilot since the first version was created. Also, this deliverable provides other key

elements, like security, data privacy and interoperability methods to complete the HosmartAI

architecture.

In addition, this deliverable aims to specify the communication between elements of the

architecture through the OpenAPI specification.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.

Chapter 2 describes the platforms integrated with the HosmartAI platform.

Chapter 3 documents the tools used for the OpenAPI specification.

Chapter 4 explains and describes the second version of the HosmartAI architecture.

Chapter 5 offers some concluding remarks.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 12

 Integrated Open Platforms

2.1 Digital Platforms

A digital platform is a software that manages one or more big functionalities. This software

could be hosted by a third party and could be installed in the HosmartAI HUB or in any of the

pilot’s developments. Platforms created by partners for the HosmartAI project are also

considered Digital platforms.

2.1.1 Acumos AI Platform
Acumos AI is an open-source platform and framework that makes it easy to build, share, and

deploy AI apps. Acumos standardizes the infrastructure stack and components required to

run an out-of-the-box general AI environment.

Figure 1: Acumos architecture.

In HosmartAI, the Acumos AI Platform is used as a tool to import AI4EU models, which can

later be updated, adapted to HosmartAI use cases and deployed to the cloud or on-premises

infrastructure.

2.1.2 Apache Maven
Apache Maven [[REF-06] is a software project management and comprehension tool. Based

on the concept of a project object model (POM), Maven can manage a project's build,

reporting and documentation from a central piece of information. Maven addresses two

aspects of building software: how software is built and its dependencies. It works as follows,

an XML file describes the software project being built, its dependencies on other external

modules and components, the build order, directories, and required plug-ins. It comes with

pre-defined targets for performing certain well-defined tasks such as compilation of code and

its packaging. Maven dynamically downloads Java libraries and Maven plug-ins from one or

more repositories such as the Maven 2 Central Repository and stores them in a local cache.

This local cache of downloaded artifacts can also be updated with artifacts created by local

projects. Public repositories can also be updated.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 13

UM uses Maven to build, test and run Apache Camel and Apache Spring Boot Java-based

applications that represent microservices for the HOSMARTAI project. For development,

Maven is executed in the Linux-based terminal with its default terminal logger.

Figure 2: CLI interface for the Maven deployment & implementation in pilot 5.

The main benefit of the use of Maven is its plugin-based architecture that allows it to make

use of any application controllable through standard input, i.e., POMs. An example POM of

an XML specification is highlighted in the figure below.

Figure 3: example of POM file in Pilot 5.

POM is an XML representation of a Maven project held in a file named pom.xml. The POM

contains all necessary information about a project, as well as configurations of plugins to be

used during the build process. It is the declarative manifestation of the "who", "what", and

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 14

"where", while the build lifecycle is the "when" and "how". A project contains configuration

files, as well as the developers involved and the roles they play, the defect tracking system,

the organization and licenses, the URL of where the project lives, the project's dependencies,

and all the other little pieces that come into play to give code life. It is a one-stop shop for all

things concerning the project. In fact, in the Maven world, a project does not need to contain

any code at all, merely a pom.xml.

2.1.3 Apache Camel and Spring Boot
Apache Camel [REF-07] is an open-source integration framework that empowers you to

quickly and easily integrate various systems consuming or producing data. Apache Camel

provides to the HosmartAI platform the base objects, commonly needed implementations,

debugging tools, a configuration system.

Apache Spring Boot [REF-08] is a tool that allows to set up a Spring-based application with

minimal configuration and setup. It creates stand-alone Spring applications, provides

dependencies and configuration to simplify the building process.

Camel support for Spring Boot provides auto-configuration of the Camel and starters for many

Camel components.

Figure 4: Generic approach to the Apache Camel Spring Boot.

Spring Boot applications that are deployed at the UM side contain a typical Spring Boot

structure with pom.xml which contains dependency descriptors for each needed component

that is used to deploy a service. Some of those are the Swagger, Apache Camel, and Apache

Tomcat.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 15

Figure 5: CLI of Apache Camel Spring Boot implementation for Pilot 5.

One of the main benefits of the Apache Camel Spring Boot [REF-09] deployment is the use of

Camel routes which are detected automatically in the Spring application context. Namely

Spring Boot component provides auto-configuration for Apache Camel. The opinionated auto-

configuration of the Camel context deployed in HosmartAI auto-detects Camel routes

available in the Spring context and registers the key Camel utilities (like producer template,

consumer template and the type of converter) as beans.

2.1.4 Discourse
Discourse is an open-source forum software. The main features that interest in the project

include support for categorization and tagging of discussions, configurable access control, live

updates, expanding link previews, infinite scrolling, and real-time notifications. It allows for a

high level of customizability via its plugin architecture and its theming system.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 16

Figure 6: Discourse screen.

The purpose of Discourse is to act as both a knowledge base and a discussion forum. More

specifically, it will contain information on HosmartAI devices, modules, services and practices.

Users will also be possible to ask and discuss issues, queries related to HosmartAI offerings.

Pinned posts under categories and topics serve as knowledge base. Single Sign - On

Authentication to Discourse is possible due to integration with the central Keycloak server

while access is possible both from the HosmartAI Hub and from external URL.

2.1.5 Docker
Docker [REF-04] is a set of platforms as a service (PaaS) product that uses OS-level

virtualization to deliver software in packages called containers. All the containers are isolated

from one another and bundle their own software, libraries, and configuration files. Also, they

can communicate with each other through well-defined channels. Because all the containers

share the services of a single operating system kernel, they use fewer resources than virtual

machines.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 17

Figure 7: Docker components.

UM can deploy production-ready applications as Docker containers. This enables fast

deployment of the same application for the future, ease of creating new instances, faster

migrations and maintaining of applications.

2.1.5.1 Docker in Platform

Each component that belongs to or is associated with the HosmartAI platform is expected to

use a Dockerfile, which contains the instructions on how it is built. We can find an example of

such a Dockerfile in the GitLab repository of an example component that uses the CI/CD.

Figure 8: Dockerfile example.

The Dockerfile is used by Docker to build an image that can be used to deploy a container.

Many HosmartAI components consist of multiple containers which can be deployed at once

by including them in a Docker Compose [REF-05] file.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 18

2.1.5.2 Docker in Pilot 5 [UM]

Figure 9: Dockerfile implementation outline for Pilot 5.

In pilot 5 all the services, services such as camel-spring-boot framework, speech recognition,

speech synthesis, gesture generation and SLAM framework are dockerized to ensure

replicability of the targeted environment and rapid deployment/re-deployment of the

services. Namely, Docker is based on Linux and, as such, has the Linux kernel in every

container, regardless of the system it is running on. This means that the environment remains

stable, despite different updates and updates to the repositories, on any system or device.

2.1.6 GreenSoft
Green Communications provides ready-to-use edge platforms for the easy setup of an edge-

based solution with connectivity, edge cloud and services among which a blockchain. Edge

clouds operating at multiple locations can be connected and synchronized to create a large-

scale Internet of Edges (IoE).

An edge cloud running a blockchain will be deployed at Pilot #5 and Pilot #6. Although the

edge cloud of both pilots could connect, they will remain isolated in the context of the project

(not connected by the Internet of Edges).

The objective is to connect pepper robots, collect and log its activities using the blockchain

service that is embedded onto the edge cloud.

Green Communications’ edge solution is composed of two main components, the GreenSoft

Operating System and the YOI platform. The following sections describe the GreenSoft while

the YOI platform is described in Section 2.2.12.

2.1.6.1 The GreenSoft

Green Communications' software (the GreenSoft) is the Operating System of Green

Communications’ Edge Cloud platform. The GreenSoft allows hardware to:

https://git.green-communications.fr/wiki/GreenComProducts/GreenSoft
https://git.green-communications.fr/wiki/GreenComProducts/GreenSoft

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 19

i. connect with nearby devices to create a dynamic and self-configuring wireless

network with quality of service (QoS).

ii. access and share a common edge cloud with edge-based services.

GreenSoft is a set of software components dedicated to wireless networking. It features a

wide range of applications, from low-level programs to web applications for end users.

GreenSoft's low-level programs are mostly routing software for mesh networks, but also

feature an SNMP module and helpers for Zeroconf networking, among others. High-level

utilities feature web applications such as a chat, a network setup app, or a live network

visualization tool.

2.1.6.2 Edge network

GreenSoft features an intelligent routing protocol implemented as a user space daemon in

charge of the following tasks:

• It detects the other devices that are part of the network.

• It estimates QoS properties for each link.

• It computes (possibly indirect) routes to other devices and sets the system's routing

table up accordingly (thus ensuring that every device forward data properly, and that

any network host can reach any other host).

• When some devices forward data from the mesh network to other networks (e.g., the

Internet), it ensures that all network hosts may reach these other networks.

GreenSoft features a handoff manager program. This is a user-space daemon that helps

routers provide access points to regular Wi-Fi users. These users, though outside the core

mesh network, may associate to the access points and get regular network connectivity

through the mesh network. The handoff manager ensures users can move from one access

point to another without disrupting their connections.

The handoff manager performs the following tasks:

• It either acts as a distributed DHCP server or as a DHCP relay, relaying DHCP requests

from users to a designated DHCP server.

• It snoops on DHCP transactions and informs the network accordingly so routers can

map MAC addresses to IP addresses.

• It snoops on Wi-Fi association and disassociation events, so routers can detect

handoffs.

• It updates the system's routing tables accordingly and configures access point

interfaces to act as a gateway to associated users.

In addition, GreenSoft features an mDNS helper. This is a user-space daemon that ensures

Zeroconf works. In practice, this means that devices that run the GreenSoft may advertise

Zeroconf services to other devices and users; and that users may also advertise their own

Zeroconf services to the network (including other users).

https://git.green-communications.fr/wiki/GreenComProducts/GreenSoft

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 20

2.1.6.3 Edge Cloud

GreenSoft features a web framework to provide users with several web applications (chat,

network setup, live network visualization tool, etc.). The application of interest in the

HosmartAI project is the blockchain. This framework uses client-side JavaScript and static

HTTP, except for three dynamic HTTP resources:

• A resource that provides a GraphML (XML) representation of the current network. The

network visualization tool uses this resource. A custom GreenSoft program provides

this resource to the web server using the SCGI protocol.

• A resource that converts GET and POST HTTP requests including JSON data to SNMP

GetBulk and Set requests. The network setup app uses this resource. A custom

GreenSoft program provides the SNMP/JSON converter to the web server using the

CGI protocol. Also note that GreenSoft features a Net-SNMP module that implements

the SNMP configuration backend.

• A resource that maps XMPP traffic to HTTP using the BOSH protocol. The chat app uses

this resource. Green Communications' routers (YOI) rely on the ejabberd XMPP server

for this resource.

GreenSoft web apps therefore need a web server. Any software can provide this server if it

supports SCGI and CGI (Green Communications’ routers use Nginx with fcgiwrap for CGI). One

can easily use the webserver to provide local content to users. One can also easily develop

new applications to integrate into the framework.

2.1.7 HAPI-FHIR Platform
HAPI FHIR is a complete implementation of the HL7 FHIR standard for healthcare

interoperability in Java. HAPI FHIR defines a class model for each resource and data type

defined in the FHIR specification, which in turn can be encoded in XML or JSON, for exchange

via REST APIs.

Figure 10: HAPI FHHIR process.

UM deploys the HAPI FHIR server based on the HAPI FHIR JPA SERVER [REF-10] which is

running the HL7 DSTU3 model for resources. This project is a fully contained FHIR server,

supporting all standard operations (read/create/delete). A conceptual architecture is outlined

below.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 21

Figure 11: HAPI FHIR JPA Architecture used in Pilot 5.

The HAPI JPA Server has the following components:

• A RESTful server Resource Provider is provided for each resource type in each release

of FHIR.

• HAPI DAOs implement all the database business logic relating to the storage, indexing,

and retrieval of FHIR resources, using the underlying JPA API.

• Database: The RESTful server uses an embedded Derby database, but can be

configured to talk to several databases: e.g., MS SQL Server, PostgreSQL, Oracle, DB2,

etc.

UM HAPI FHIR server offers Swagger UI as the REST API offering endpoints for work with the

FHIR resources. UM HAPI FHIR server is running as a Spring Boot application on top of Java

and is implemented using the DB2 database.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 22

Figure 12: UM’s HAPI FHIR implementation in Pilot 5.

Together with the HAPI FHIR server, UM provides a dashboard of the FHIR collected

resources. The dashboard can be used to show a list of patients, their observational data

(latest observation UUID, date of observation, status, weight, BMI, systolic blood pressure),

and more specific credentials (UUID, patient id, gender, address, birth date) as well as graphs

to help clinicians to visualize collected patient data over time.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 23

Figure 13: Dashboards used to visualize the clinical and data collected in Pilot 5.

2.1.8 JupyterHub
JupyterHub is a multi-user proxy server that interconnects several Jupyter Notebook

instances. It can be hosted in the cloud (HosmartAI platform) or on own hardware and allows

you to use a shared Notebook environment.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 24

Figure 14: Jupyter example.

In HosmartAI, JupyterHub is used as a collaboration space, mostly for Jupyter Notebooks, but

also for running Python and other scripts on the Linux terminal. Jupyter Notebooks can be

used to run examples in Python that use Apache Kafka, Spark, or MongoDB, which are in

separate VMs. It provides access to AI tools that have been installed on the same VM, such as

Scikit-Learn PySpark, TensorFlow and Pandas.

2.1.9 Keycloak
Keycloak is an open-source software product that enables single sign-on (IdP) with Identity

Management and Access Management for modern applications and services. This software is

written in Java and supports by default the SAML v2 and OpenID Connect (OIDC) / OAuth2

identity federation protocols.

From a conceptual perspective, the intention of the tool is to facilitate the protection of

applications and services with little or no encryption. An IdP allows an application (often

called a Service Provider or SP) to delegate its authentication.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 25

Figure 15: Login screen.

2.1.9.1 Keycloak in Platform

Keycloak has been configured to handle the login requests from various platform components

and can be configured for external components as well. For example, when someone tries to

access JupyterHub using HosmartAI credentials, they are presented with a form to provide

their credentials, which is generated by Keycloak. Upon successful login, the user is redirected

back to the component they initially requested to access, e.g., JupyterHub.

Figure 16: HHub login.

2.1.9.2 Keycloak in Pilot 3

VIMAR uses Keycloak as an access and authorization management provider. It emits an access

token/refresh token, and it validates the emitted tokens. The identification is carried out

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 26

through an external provider, namely the MyVIMAR portal, where the user can access with

its own credentials.

In Pilot 3, Keycloak allows communication with the KNX IoT 3rd party client, providing the

authorization to access the various resources.

2.1.9.3 Keycloak in Pilot 5

Regarding data access and security, UM implements Keycloak. Keycloak adds authentication

to applications and secure services. It provides user federation, strong authentication, user

management and fine-grained authorization. UM Keycloak protects the UM FHIR server by

periodically generating new JWT tokens that are needed to access the UM FHIR API and

connect to the FHIR server to handle the FHIR resources. Keycloak is also deployed as a layer

of protection for access to UM’s backend services, such as speech recognition, speech

synthesis, natural language generation services and MRAST framework.

2.1.10 Sentry
Sentry [REF-11] is defined as a system focused on application monitoring that works through

a fault tracker that monitors and responds to faults that may occur in the application in real-

time.

In addition to this, Sentry offers easy management of applications through an intuitive

interface that allows you to perform your monitoring activities in a user-friendly manner.

Among the main features and properties of the Sentry monitoring system, we highlight its

ability to perform context monitoring of user applications to report errors or failures that

occur in the servers or services. This property also allows developers to have immediate

visibility into the impact or effects of production code on real users.

Once Sentry has identified application failures, it then triages, classifies and ultimately fixes

these problems as part of its workflow.

So, this system is characterized by enabling the identification of performance bugs, before

they become uptime that would affect the application's operation.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 27

Figure 17: Sentry dashboard.

UM uses Sentry Dashboard to track and monitor logs, errors, and performance of the

deployed applications. Sentry monitor multiple applications developed for the HOSMARTAI

project over one Dashboard that’s accessible over a web browser. To monitor and log python-

based applications we exploit Sentry's Python SDK. It includes powerful hooks that enable

automatic reporting of errors and exceptions as well as identify performance issues in our

python-based services (e.g., MRAST framework). The Sentry's Java SDK enables capturing

sessions for Release health as well as reporting messages and errors (i.e., from Camel Spring

Boot). At its core, Sentry for Java provides a raw client for sending events to Sentry.

2.1.11 SonarQube
SonarQube is an open-source platform for continuous inspection of code quality through

different static source code analysis tools. It provides metrics that help improve the quality of

a program's code by allowing development teams to track and detect bugs and security

vulnerabilities to keep the code clean.

It is an essential tool for the testing and code auditing phase of the application development

cycle and is considered perfect for guiding development teams during code reviews. It

supports a continuous inspection stage.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 28

Figure 18: Issues navigator.

In the HosmartAI Platform, SonarQube is integrated with Keycloak therefore you need to

follow the link https://hhub.hosmartai.eu/sonarqube and provide the Keycloak credentials.

During the development phase a step on the Jenkinsfile should be added. INTRA for demo

purposes has delivered the projects CICD-Demo found on the project’s Gitlab. This project is

based on a Spring Boot microservice with Maven and the step on the Jenkinsfile is as follows:

stage('SonarQube analysis') {

steps {

withSonarQubeEnv(credentialsId:'sonarqube-integration', installationName: 'sonarqube') {sh

'mvn sonar:sonar'}

 }

 }

This results the SonarQube analysis to be performed during the integration with Jenkins. The

result is by selecting SonarQube from the menu of the HosmartAI HUB.

https://hhub.hosmartai.eu/sonarqube

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 29

Figure 19: SonarQube UI with project analysis.

2.1.12 Sonatype Nexus OSS
Sonatype Nexus Repository is a repository manager for binary software components

(artifacts, packages, ...). A binary repository manager is a software tool designed to optimize

the download and storage of binary files used and produced in software development.

A binary repository manager is an essential part of a continuous software integration and

delivery architecture.

Figure 20: Sonar repository list.

In the HosmartAI Platform, Sonatype Nexus is integrated with Keycloak therefore someone

needs to provide Keycloak credentials after visiting https://hhub.hosmartai.eu/registry.

https://hhub.hosmartai.eu/registry

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 30

Figure 21: Nexus integration to Keycloak.

It is used mostly as a Docker image repository. By visiting Nexus, the user can view the images

that are stored there and the different versions.

Figure 22: Nexus Repository Manager UI.

2.1.13 Spark
Spark is an ultra-fast engine for storing, processing and analysing large volumes of data and

is specially designed for implementation in big data and machine learning. Its processing

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 31

power speeds up the detection of patterns in data, the organized classification of information,

the execution of intensive computation on data and parallel processing in clusters.

Figure 23: Spark architecture.

In the HosmartAI Platform, there is a PySpark kernel that has been installed in JupyterHub,

which allows users to directly use the local Apache Spark deployment. Except for Jupyter

notebooks that use the PySpark kernel, PySpark can be used from the JupyterHub terminal as

well.

2.1.14 Swagger
Swagger is a suite of tools for API developers and a former specification upon which the

OpenAPI Specification is based.

Figure 24: Swagger example API.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 32

2.1.14.1 Swagger in Pilot 3

In Pilot 3, Swagger is used to defining the APIs for communication with the cloud and to

handle the documentation. VIMAR provided the KNX Swagger as documentation to the KNX

IoT 3rd party integrator, which can use the documentation as reference in their

implementation.

2.1.14.2 Swagger in Pilot 5

Swagger UI allows one to visualize and interact with the API’s resources without having any

of the implementation logic in place. It’s automatically generated from OpenAPI Specification,

with the visual documentation making it easy for back-end implementation and client-side

consumption. UM Swagger documentation consists of multiple HTTP endpoints each with a

specific method that on user request runs the Java code in the backend of the Spring Boot

application. Swagger UI is protected with the API KEY and uses HTTPS SSL encryption.

Figure 25: Pilot 5 API.

2.2 Physical Platforms

Physical platforms are hardware elements that interact with the environment where they are

deployed, like sensors, specialized tools, or robots.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 33

2.2.1 Arduino
Arduino is an open-source electronics creation platform, which is based on free hardware and

software, flexible and easy to use for creators and developers. This platform allows the

creation of different types of single-board microcomputers that can be put to different types

of use by the maker community.

Figure 26: Arduino board.

2.2.2 Capsule Endoscopy System
The Capsule Endoscopy System is a minimally invasive ingestible camera in a pill-shaped

capsule that allows visualization of the small bowel, which is not accessible through upper

and lower endoscopy. The patient is equipped with a small recording device that wirelessly

receives and stores the images captured continuously by the camera as it travels through the

gastrointestinal tract. The resulting video sequence can be examined by a gastroenterologist

to identify abnormalities or lesions and subsequently diagnose conditions. In the video

capsule endoscopy scenario of Pilot 1, a capsule endoscopy system will be used to acquire

capsule endoscopy videos that will be analysed with the pilot’s AI-based tool for automatic

detection and classification of small bowel abnormalities, to evaluate the tool’s capacity to

accelerate and improve the accuracy of the examination procedure and, ultimately, to

improve small bowel condition diagnosis via AI-assisted capsule endoscopy.

2.2.3 Clarius PA HD Scanner
The Clarius PA HD Scanner is a handheld wireless ultrasound scanner that provides high-

definition imaging for a variety of medical applications including cardiac, abdominal, lung, and

vascular imaging. The portability and ease of use offered by the PA HD scanner is of high value

for cardiologists performing echocardiographic examinations under time pressure. To this

end, both a regular bedside ultrasound scanner and the PA HD scanner will be used in the

echocardiography scenario of Pilot 1 for the acquisition of echocardiograms that will be

analysed with the pilot’s AI-based tool for automatic estimation of left ventricular (LV)

ejection fraction (EF) and global longitudinal strain (GLS). Evaluating the tool with scans from

both devices will yield more complete evidence on its estimation capacity and will reveal

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 34

whether a fast workflow for accurate LV function diagnosis based on portable ultrasonics and

AI-based LVEF and LVGLS estimation is possible.

Figure 27: Clarius hardware.

2.2.4 MagnoFlush
The MagnoFlush and MagnoBlate Catheters are designed to be used during a wide variety of

robotic cardiac ablation procedures.

Figure 28: MagnoFlush hardware.

2.2.5 Maxim 32660
In the DARWIN family, the MAX32660 is an ultra-low-power, cost-effective, highly integrated

32-bit microcontroller designed for battery-powered devices and wireless sensors. It

combines a flexible and versatile power management unit with the powerful Arm® Cortex®-

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 35

M4 processor with a floating-point unit (FPU) in the industry’s smallest form factor: 1.6mm x

1.6mm, 16-bump WLP or 4mm x 4mm, 20-pin TQFN-EP, or 3mm x 3mm, 24-pin TQFN-EP.

Figure 29: Maxim board.

2.2.6 Navion (Magnebotix)
The Magnebotix-Navion is a magnetic field generator that enables field-guidance studies in

much larger volumes. Its patented coil system can produce electrically steerable fields of up

to 50mT at 20cm from the face of the generator, thus allowing extended studies at a medically

relevant scale. The Magnebotix-Navion has the same characteristics as its medically certified

counterpart and is ideally suited for the development of surgical procedures in animals and

further human-scale biological and engineering applications.

Figure 30: Navion hardware.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 36

2.2.7 Pepper Robot
Pepper is a semi-humanoid robot manufactured

by SoftBank Robotics designed with the ability to

read emotions. Pepper can chat autonomously

with prospective clients.

Pepper is not a functional robot for domestic use.

Instead, Pepper is intended "to make people

enjoy life", enhance people's lives, facilitate

relationships, have fun with people and connect

people with the outside world.

2.2.7.1 Pepper Robot in Pilot 5

Figure 31: Pepper use cases.

The Pepper robot, developed by SoftBank Robotics, is a 120 cm tall social humanoid robot

optimized for human interaction and engaging with people through conversation and a touch

screen. It is capable of natural movement, navigation, speech recognition, and dialogue, and

is equipped with perception modules and various sensors for multimodal interactions (e.g.,

microphones, infrared sensors, cameras, and sonars). Thus, Pepper in pilot 5 represents an

integrated solution comprised of a computerized clinical decision support system and a

service robot enabling the intuitive collection and display of health/clinical data, to support

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 37

nurses by taking over activities that represent no added value to them (e.g., administrative

and routine tasks) and to entertain, inform and motivate patients.

These functions allow for smooth interaction that does not require any specific training. The

Pepper robot also has several safety mechanisms, such as bumper sensors, that prevent it

from physically harming participants. For the purposes of HosmartAI, the robot was taught to

understand and express gestures, facial expressions, and speech in the Slovenian cultural

context and language. It was also taught to perform exercises and scenarios that are part of

the intervention.

The overall system, however, enables not just telemonitoring but also working with

qualitative and self-reported data from patients regarding pain, issues, and psychological

well-being. The robot can be integrated into general administrative data collection and

digitalization processes before or during patient admission. It also provides support during

grand-round routines by displaying relevant data, and it assists the distribution of medicines

by identifying alternatives if the prescribed drugs are not available. Basically, the robot

collects whatever needs to be done with the patient and it prevents patients’ inputs need to

be retrieved manually by nurses or doctors themselves. The humanoid features facilitate

more natural, trustworthy, and engaging interaction while computer vision, language, and

acoustic processing help to understand and motivate patients to exercise or move. Thanks to

integrated blockchain technology, the robot’s accountability is guaranteed as well. This makes

it possible to know what the robot is doing at any given time, where it is, and whether it is the

cause of eventual mistakes

In pilot 5 the robot is connected to a proprietary edge platform capable engage with robot

and digital services and to record and trace data and activates via a blockchain service. We

deliver our own graphical interface and a control API to control the robot developed in the

python programming language. With this interface, we can move the robot, add gestures and

speech, and enable multiple levels of autonomy, including localization and task or care-

workflow execution.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 38

Figure 32: Pepper integration.

2.2.7.2 Pepper Robot in Pilot 6

 In pilot 6, the robot carries out social activities in the clinical care center with users in group

and individual formats.

• In the individual format, emotion recognition actions are carried out through the

functions that pepper integrates into the development SDK.

• In the group format, Pepper will be a new working tool the therapists will count on for

carrying out physical stimulation activities (e.g., psychomotricity sessions) and/or

active aging workshops.

The activities that are proposed to the user through Pepper are designed in the Activity Plan

Editor and the connection with the platform and the registration of the actions are carried

out through a blockchain service. The connectivity herein mentioned is detailed in D3.2 “First

set of AI-based Solutions and Autonomous Smart Components”, Sections 6.1.2 and 6.2.2, and

D5.4 “HosmartAI Pilots – First version”, Chapter 8.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 39

Figure 33: Pepper use case.

2.2.8 Smart Digital Monitors
The BeneVision Patient Monitor with N1 module is intended for monitoring, displaying,

reviewing, storing, alarming, and transferring multiple physiological parameters including

ECG (3-lead, 5-lead, 6-lead or 12-lead selectable, Arrhythmia Detection, ST Segment Analysis,

QT/QTc Analysis, and Heart Rate (HR)), Respiration (Resp), Temperature (Temp), Pulse

Oxygen Saturation (SpO2), Pulse Rate (PR), Non-invasive Blood Pressure (NIBP), Invasive

Blood Pressure (IBP), Pulmonary Artery Wedge Pressure (PAWP), Carbon Dioxide (CO2),

Oxygen (O2), and Continuous Cardiac Output (CCO). The monitor also provides an

interpretation of resting 12-lead ECG.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 40

Figure 34: Smart monitor hardware.

The applied parts of the monitor are:

• ECG electrode and lead wire

• SpO2 sensor

• Temp probe

• NIBP cuff

• IBP transducer

• PiCCO sensor

• CO2 sampling line/nasal sampling cannula, water trap, and mask

The monitor comes with a modular parameter module (N1) that allows patients to freely

move even while connected to the monitor. When the N1 is connected to the host monitor,

the N1 enters the module mode. The N1 monitor has the following features when it enters

the module mode:

• The patient information, parameter setup, and alarm setup of the N1 and the host

monitor will be synchronized. For data transfer strategy, see the operator’s manual of

the host monitor.

• The N1 can still store the parameter data and the alarm events.

• The N1 receives and stores the parameter trends data from the host monitor.

• All audible sounds of the N1 are off.

• Wired and wireless network of the N1 is not available.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 41

• The alarm indications of the battery-related alarms of the N1 are given by the host

monitor.

• Turning on or off the host monitor simultaneously powers on or off the N1.

• The main screen of the N1 is off when it is connected to the host monitor through the

SMR or the module rack of the host monitor.

• The N1 resumes monitoring even when it is disconnected from the host monitor

In HosmartAI the monitors are used to collect health quality measures and structure them in

an interoperable HL7-FHIR format. We also exploit the MU-Connect IT solution which

provides a universal central monitoring platform and fully integrates bedside medical devices

using a standard interface to connect a 3rd-party information system (i.e., UM HAPI FHIR).

The real-time access to health data during the grand round routine is ensured with speech-

enabled user interfaces delivered via a tablet attached to the socially assistive robot Pepper.

2.2.9 Gradior Management System and APP Gradior
Gradior Cognitive is a neuropsychological assessment and rehabilitation system for the

implementation of training and recovery programmes of higher cognitive functions in people

with cognitive deficits and/or impairment. This program is accessible through electronic

devices such as a tablet or a computer.

The program consists of the application of a series of cognitive modalities, in the form of

audio-visual exercises (attention, memory, orientation, perception, calculation...). Each of

them contains several sub-modalities (e.g., sustained auditory attention, iconic short-term

memory, etc.) and each sub-modality can have from 2 to 11 levels of difficulty. In total, the

Gradior program contains 45 different types of exercises. Data collection is done

automatically by a statistical score tool called Gradior score. This score is a quantitative

variable that calculates the average of results obtained in the tests of each cognitive sub-

modality providing a monthly score since the beginning of the cognitive treatment,

summarizing performance in each sub-modality and overall performance.

In a standard therapeutic routine (commonly called treatment), the predetermined time for

each exercise is approximately 1 minute, and the total duration of the session is 30 minutes.

Participants finish the 30-minute session with a certain number of exercises performed. The

next treatment session begins with the exercises not performed in the previous session. This

prevents the participant from performing the same exercise more than once in a session.

Treatment for participants includes exercises adapted to each treatment group,

complemented with a baseline evaluation to define starting level of difficulty for each

participant. The intervention routine is reviewed for each participant monthly.

Requirements:

• WEB Manager: No specific requirements are necessary. Any device (Tablet, mobile,

PC) with internet connection and internet connection using any browser will be

enough.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 42

• GRADIOR APP: Depending on the device where the GRADIOR APP is installed, the

requirements are the following:

o PC:

▪ Processor: Intel Core i3 (6th generation or better)

▪ Memory: RAM 4GB minimum

▪ Minimum Operating Systems: Windows 10 Fall Creators Update OS build

16299. iOS 13.

▪ Ethernet or WIFI internet connection

o Tablet:

▪ Processor frequency: 1.6 GHz

▪ RAM: 2Gb LPDDR4X minimum

▪ Memory (ROM): 32 Gb (requires 2 Gb free for installation)

▪ Screen: 10'' (for usability reasons)

▪ Minimum operating system: Android 9.0

▪ 3G or WIFI internet connection

The professional’s web management and the patient intervention app offer an Intuitive

monitoring dashboard summarizing results to facilitate the clinical assessment. Further

description of the Gradior component can be found in D3.1 “Design of AI-based Solutions and

Autonomous Smart Components" in pages 70 to 72. Information regarding the connection to

other tools and the deployment in the clinical setting can be consulted in D5.4 “HosmartAI

Pilots – First version”, in Chapter 8.

The results collected during the Gradior sessions are sent to the HosmartAI platform in an

interoperable HL7-FHIR format according to the corresponding regulations.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 43

Figure 35: Gradior configuration.

2.2.10 VIMAR View Wireless system
The Vimar View Wireless system is designed to manage lighting in environments, roller

shutters or motorized curtains, and monitor energy consumption. The users can control and

interact with many devices in their home with an app on the smartphone, through which it is

also possible to create personalized scenarios. The installation is simple and does not require

masonry, thus it is ideal for renovations or to boost the functions of an existing system. The

possibility of interacting with different devices using exclusively a smartphone makes this

solution a useful means of support for the elderly and people with restricted mobility.

The installation of the connected framework is easy and does not require invasive

intervention. It is possible to create a connected system with recessed devices, suitable for

any architectural context, thanks to the completely matching styling of the digital products

and their easy functional expandability. The wiring of connected devices requires a power

supply (L, N) and connection to the related loads and/or electro-mechanical control devices

(2-way switches, 1-way switches, push buttons) to replicate control points or activate

scenarios. The battery-free and wireless controls based on energy harvesting technology by

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 44

EnOcean make it possible to add control points in complete freedom at any time. It is

sufficient to substitute the traditional modules with the new connected version.

A gateway module needs to be installed, it allows the connection and communication with

the cloud.

Each device must be installed and configured through View Wireless App.

2.2.10.1 Network and Communication

The devices are pre-configured by default with the Bluetooth® technology 5.0 standard and

this is the communication protocol used in the installation in San Camillo hospital. The devices

can also operate with the Zigbee technology standard.

The Bluetooth technology standard is designed to use devices in a mesh network, in which

the gateway (Bluetooth® and Wi-Fi technology) is designed to control the system from the

user View App both locally and remotely, and to control the system with voice assistants. The

system is compatible with IFTTT, also integrating IFTTT-compatible third-party devices.

The system is configured in Bluetooth Mesh technology mode and all the parameters are set

via the configuration APP.

Figure 36: Architecture of the system.

2.2.10.2 Available Devices

Table 2: Catalogue of available devices.

Type of device Code Description Functions

Connected

gateway

20597

19597

Bluetooth technology Wi-Fi device

designed to allow dialogue with wireless

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 45

Type of device Code Description Functions

16497

14597

devices to permit the configuration,

supervision, system diagnostics and its

integration with voice assistants. Main

device that manages the Bluetooth

technology Mesh network. Via the View

Wireless App, it receives the system

configuration through Bluetooth

technology. The presence of Wi-Fi

connectivity is required to allow the

connection to the cloud for supervision and

for integrations with Alexa, Google

Assistant, and Siri voice assistants.

Connected 2-way

switch

20592.0

19592

19592.0

16492

14592.0

14592

03981

The electronic switch mechanism

connected is designed to operate a load via

an onboard push button, through a

wireless connection, and from a traditional

remote push button. The device is

equipped with 2 interlocked relay outputs

to accomplish the switch function and a

front key to control the connected load. It

performs the automatic opening of the

relay for thermal protection. Switching on

zero crossing. The electronic switch can be

connected to existing wired multi-

way/two-way switches to make the load

function “connected”.

• Toggle on/off

• One-position stable

activation time

Connected rolling

shutter

mechanism

20540

19594

19594.0

16494

14594

14594.0

03982

The device makes it possible to control the

roller shutter/slat using the onboard keys

and via a wireless connection. It is

equipped with mutually exclusive

activation of the relays with a minimum

interlocking time. The front keys of the

device control the onboard roller shutter

actuator, starting or stopping the slat

movement or the rotation. It allows also

the recall of a favourite position.

• Slat orientation

• Roller shutter activation

• Preferred position

• Movement check

• Scenario activation

• Status check

Connected

actuator

20593

19593

16493

14593

The actuator is equipped with a relay

output with a current meter and a front

push button with which to reset the load

and perform configuration/reset. Its

function is to protect against overcurrent

by cutting off the load when the threshold

value set via the View Wireless App is

exceeded. Load reactivation, aside from

the front push button, can also be done via

the View App. The View App also makes it

• Load cut-off threshold

function

• Consumption threshold for

load cut-off

• Load status when the power

supply is restored

• Relay operation: two-

position stable or one-

position stable

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 46

Type of device Code Description Functions

possible to View the instant power

consumed.

• One-position stable

activation time

Monophase IoT

energy meter

02963 The device is designed to measure the

consumption/production of instantaneous

electricity and consumption logs with an

hourly, daily, monthly and annual

resolution. It should be connected to the

single-phase line using the current probe

provided. Only one meter for total

consumption can be installed in a system.

• Energy

consumption/production

• Monitoring of instant power

consumption/ production

• Monitoring of instant

energy consumption/

production

NFC/RFID smart

card landing

reader

19462

20462

14462

Access control is achieved with the

combined usage of an NFC/RFID smart card

landing reader and NFC/RFID smart card

reader pocket, both controlled and

configured by using View Wireless App. The

smart card landing reader device is

designed to be installed outdoors and near

an entrance and it grants access only if the

smart card associated with it is read and

recognized.

• Recognition of the smart

card (that triggers the door

opening)

• Anomaly detection on the

reader

• Do Not Disturb signaling

• “Crossover relay” option for

combined operation with

card reader pocket

NFC/RFID smart

card reader

pocket

19467

20467

14467

NFC/RFID smart card reader pocket allows

the activation of utilities only if the wireless

smart card associated with it is read and

recognized. The two devices are designed

to communicate (if associated during

configuration) to manage accesses to the

same room and ensure greater safety via

the “Crossover relay” option.

• Recognition of the smart

card (with toggle off if card

removed)

• “Crossover relay” option for

combined operation with

card landing reader

Ultra-Wide Band

(UWB)

14179

16629

19179

20179

30179

02692

This sensor can detect human

movement/presence without using Fresnel

lenses. It employs a military-based radar

UWB technology capable of detecting

centimetres-wide human movements. It

has been conceived a recessed version and

one to be installed in the ceiling.

The sensor has been developed during the

HosmartAI project.

• People Presence/absence

• Micro movements

detection/Breath detection

• Load activation

• Area/volume of detection

parametrization

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 47

2.2.11 Windows and Android Tablets, Smartphones, for View VIMAR APP and

iMat.

2.2.11.1 App View and View Wireless

The connected environment provided by VIMAR can be managed and controlled through App

View Wireless and App View, both available on main stores. The first is used by the installer

to set up and configure the system. It allows the creation of environments and the association

of all the devices with the respective environments. For every device the installer can set the

function, the parameters, and any accessory devices.

The installer, via the View Wireless App, delivers the configured system to the Administrator.

The Administrator user, via the View App, can now manage the system functions and

associate other users assigning rights and permissions. App View allows the user to:

• customize up to 16 scenarios.

• check the status of presence, lights, roller shutters or curtains and of the loads

connected to the socket outlets.

• view the consumption throughout the home.

• receive notifications if the contractual power level is exceeded.

• integrate the app with the IFTTT platform to integrate with third-party connected

devices.

• check the presence and access of users.

Figure 37: Examples of the VIMAR App.

2.2.12 YOI-6 router (embedded blockchain node) - SBC with Wi-Fi or 4G

interfaces
Green Communications provides ready-to-use edge

platforms for the easy setup of an edge-based solution with

connectivity, edge cloud and services among which the

blockchain.

YOI is an embedded Linux router equipped with Green

Communications’ software (GreenSoft). Each router comes

with one dual-band Wi-Fi 6 interface that creates a network

with other YOI, and provides access to smartphones, tablets, laptops, or any other Wi-Fi

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 48

device. YOI features a web server, so one can provide local content, services, and applications

to the network. YOI can also be configured as a gateway. In this case, local traffic stays local

and global traffic is sent across the gateways to other networks.

YOI router specifications are listed in the following table:

Table 3: YOI router specifications.

Ethernet: 1 Ethernet port (10/100/1000 Mbit/s)

Wi-Fi: 1 dual-band Wi-Fi card (a, b, g, n, ac, ax), providing 2 Wi-Fi interfaces to the

system, one assigned to the 2.4 GHz band, and one assigned to the 5 GHz

band. Each interface can operate simultaneously with the other on its

dedicated band

Suggested

operation:

Wi-Fi no. 1: Backhaul

 Wi-Fi no. 2: Access

 Ethernet: Internet when available

Frequency: 2.4 GHz and 5 GHz

Antenna: 2 dual-band Wi-Fi (RP-SMA, 5 dBi max)

Wireless

rates:

Up to 1.2 Gbit/s

Encryption: WPA2/WPA3 (access), SAE (backhaul)

Operating

system:

Custom Linux system (based on Buildroot)

CPU: Cortex-A9 800 MHz Dual Core

RAM: 512 MB

Other

interfaces:

1 USB OTG, 1 Micro-HDMI

Environmen

tal features:

-40ºC +85ºC

Dimensions: Approx. 85 × 105 × 35 mm (casing without antenna)

Weight: 280g (enclosure and antennas included)

Power

supply:

power through Ethernet (passive PoE) or Barrel Jack DC from 8 to 60 V (AC
adapter included)

Power

consumptio

n:

≃ 6W

Software: Each YOI comes with a GreenSoft license

In the context of the HosmartAI project, YOI routers will be displayed on Pilot #5 and Pilot #6

premises to connect the PEPPER robots and collect and log the robot’s activities in the

blockchain service embedded in the YOI router.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 49

 OpenAPI Specification
In this section we present the main elements of the architecture that require OpenAPI

communication to perform their function.

3.1 Tools for managing OpenAPIs

The OpenAPI can be generated and edited in different forms. There is a long list of such tools

for this task. The following are the tools used to perform this task.

3.1.1 Generators

3.1.1.1 Swashbuckle (NET Core)

This tool consists of a swagger tooling for APIs built with ASP.NET Core. Generates API

documentation, including a UI to explore and test operations, directly from the routes,

controllers, and models.

In addition to its Swagger 2.0 and OpenAPI 3.0 generator, Swashbuckle also provides an

embedded version of the swagger-UI that's powered by the generated Swagger JSON. This

means that can complement your API with living documentation that's always in sync with

the latest code. It requires minimal coding and maintenance, allowing you to focus on building

an awesome API.

Figure 38: Tool installation from IDE.

3.1.1.2 safrs (Python)

SAFRS [REF-12] is a Python library that exposes a database defined with the framework

SQLAlchemy as a JSON:API web service and generates the corresponding OpenAPI

specification for a swagger service.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 50

Figure 39: Example of safrs code.

By default, it generates GET (retrieve an object), POST (Create an object), DELETE (Remove an

object) and PATCH (Update an object) methods for a selected object and the objects it’s

related to.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 51

Figure 40: Safrs autogenerated Swagger.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 52

Figure 41: Safrs Swagger call example.

OpenAPI descriptions can be added by using comments to classes and functions, mainly by

adding a triple double-quote comment below the class or function definition.

The “description” comment describes the parameter, and the “args” comment can give more

information about the field's names, types, and examples of use.

For example:

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 53

def send_mail(self, **args):

"""

 description: Send an email

 args:

 email:

 type: string

 example: test email

"""

Figure 42: Safrs description swagger example.

3.1.1.3 NelmioApiDocBundle (PHP-symfony)

NelmioApiDocBundle is a framework that adds OpenAPI and swagger generation to PHP-

Symfony.

To install it, Symfony and PHP must be installed and configured. Then, run the following

command in the terminal:

composer require nelmio/api-doc-bundle

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 54

Figure 43: Nelmio api-doc-bundle installation.

The project needs the file: nelmio_api_doc.yaml, where the main documentation for the API

can be added, and a regular expression for only showing paths to API URLs in the openAPI.

Figure 44: Nelmio api doc yaml.

In the file bundles.php, there must be a line including nelmio \ apiDocBundle \

NelbioApiDocBundle.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 55

Figure 45: bundles.php nelmioApiDocBundle.

And the last thing to configure the OpenAPI must be a file “nalmio_api_doc.yaml”, in the

routes folder, with the path for showing the swagger interface.

By doing this, the /api/doc URL can be accessed, with the swagger interface, and the

/api/doc.json can be accessed with the source code for the OpenAPI.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 56

Figure 46: Swagger interface for NelmioApiDocBundle.

Figure 47: OpenAPI source code for NelmioApiDocBundle.

3.1.1.4 Swagger Maven Plugin

Swagger Maven Plugin is a plugin for java projects using maven to generate swagger API

documentation while building with maven.

This plugin does not serve the online documentation after building but only generates the

spec docs to be used later.

For using it, it’s only necessary to add it in the plugins block by writing the plugin definition:

<plugin>
 <groupId>com.github.kongchen</groupId>
 <artifactId>swagger-maven-plugin</artifactId>

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 57

 <version>${swagger-maven-plugin-version}</version>
 <configuration>
 <apiSources>
 <apiSource>
 ...
 </apiSource>
 </apiSources>
 </configuration>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

And edit the pom.xml file to add the dependency:

<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.1</version>
</dependency>

Installation is complete at this point and just run the mvn compile command to generate the

swagger.

As this plugin does not serve the web with generated documentation, it is necessary to expose

it somehow. Nginx or Apache can be used, for example. The following command allows to get

it up with docker:

docker run -it --rm -d -p 8080:80 --name web -v /home/adrian/swagger-maven-

example/generated/:/usr/share/nginx/html nginx

Exposed documentation would be like this:

Figure 48: Swagger maven plugin main documentation web.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 58

3.1.1.5 drf-yasg (Yet another Swagger generator)

It’s a real swagger/openAPI specifications generator for Django REST APIs. Provides the

option to choose between swagger-UI and redoc or both for documentation generation but

it’s only working with OpenAPI 2.0 and has no support for OpenAPI 3.0 and it’s unplanned to

give support for 3.0 in short term.

This tool is installed using python-pip and requires python to be installed in one of the

“3.6,3.7,3.8,3.9” versions. Once installed, only need to run the following command to install

drf-yasg:

pip install -U drf-yasg

Once installed, we should add it to the requirements.txt file by adding the following two lines:

djangorestframework==3.11

drf-yasg==1.20

The next step is to add the following to the INSTALLED_APPS variable in settings.py:

INSTALLED_APPS=[

 ...

 'rest_framework',

 'django.contrib.staticfiles',

 'drf_yasg',

 ...

]

In the urls.py file, the following lines must be added to enable the WebUI for swagger. In

urlpatterns, we added two different views, redoc and swagger to make them available as

examples. Two exposed endpoints show a JSON and a YAML representation of the API

specification.

schema_view = get_schema_view(
 openapi.Info(
 title="Snippets API",
 default_version='v1',
 description="Test description",
 terms_of_service="https://www.google.com/policies/terms/",
 contact=openapi.Contact(email="contact@snippets.local"),
 license=openapi.License(name="BSD License"),
),
 public=True,
 permission_classes=[permissions.AllowAny],
)

urlpatterns = [
 re_path(r'^swagger(?P<format>\.json|\.yaml)$',
schema_view.without_ui(cache_timeout=0), name='schema-json'),
 re_path(r'^swagger/$', schema_view.with_ui('swagger', cache_timeout=0),
name='schema-swagger-ui'),
 re_path(r'^redoc/$', schema_view.with_ui('redoc', cache_timeout=0), name='schema-
redoc'),

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 59

 ...
]

With these changes, the API is exposed in /swagger/ as shown:

Figure 49: Swagger endpoint in drf-yasg.

3.1.1.6 HAPI swagger

OpenAPI generator plugin for HAPI to self-document the API interface for JavaScript objects.

nodeJS or npm must be installed to install this tool. Once installed, only need to run the

following command to install hapi-swagger:

 npm install hapi-swagger --save

 npx install-peerdeps hapi-swagger

After installation, modules must be imported into the JavaScript code and endpoints tagged

by tags: ['api'], in the options section of the code.

After running the application again, API documentation is generated in /documentation/

route.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 60

Figure 50: Swagger endpoint in hapi-swagger.

Figure 51: Swagger endpoint details for the ‘account’ object in hapi-swagger.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 61

Figure 52: Swagger maven plugin API call example.

3.1.2 GUI Editors
Certain generator tools only generate a basic definition of its OpenAPI, so it’s needed to add

more information to clarify all the methods, parameters, schemas and all the other elements

that an OpenAPI needs.

3.1.2.1 ApiBldr

ApiBldr is an application for API design and modelling. A primary goal of ApiBldr is to enable

the API-First design approach for both developers and non-developers and to save

development time.

With this tool, any OpenAPI specification can be edited, reviewed, and validated.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 62

Figure 53: Main screen of Apibldr.

Form-based design means you don't need to be an OpenAPI expert to operate with this tool.

ApiBldr has a write mode with full OpenAPI autocomplete, and a read mode for visualizing

HTTP operations and models.

Figure 54: Method description.

3.1.2.2 Swagger Editor

With Swagger editor you can perform a visual check of the elements that make up the API. At

the same time, it allows you to identify code errors, indicating the line where the error is

located. This editor requires specific knowledge of the OpenAPI standard.

This tool also has a wide range of possibilities in the field of testing. It allows the server part

to be generated to make the calls defined in the API. At the same time, we can generate a

client from a wide variety of languages to include it in the tool being developed.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 63

Figure 55: OpenAPI source code.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 64

 Updated HosmartAI Architecture Design
To understand the new version of the architecture, we present below the resulting version of

D4.1.

4.1 Previous version

We present the old version of the diagram, to give visibility to the changes made during this

period.

Figure 56: Old architecture diagram.

4.2 New elements

This section describes all the components that have been added to the platform. As in the

previous deliverable, it details the requirements and general functioning of each component.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 65

4.2.1 Nexus repository

Nexus is a software that offers artifact repository functionality. It allows an

organization to privately share artifacts between different projects. It supports

different types of repositories depending on the type of artifacts, jar libraries

for Java, npm packages for JavaScript, container images for Docker, Python and

Go packages.

There are two versions of the Nexus repository, the open-source version, and a commercial

version that offers support and a few extra features.

Figure 57: Nexus repository versions.

Hardware elements

1. 64-bit processor

1. > = 4 cores

2. 8GB RAM

3. BIOS hardware virtualization support

Software elements

1. Linux OS

2. MacOS

3. Windows

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 66

4.2.2 Security VM
To security monitoring of all the selected components inside the HosmartAI platform, a

central virtual machine has been deployed.

This VM exposes (to the other virtual machines of the platform) a Logstash endpoint where

all application logs of the selected components are sent, parsed, transformed into a

structured form and finally stored in Elasticsearch, a NoSQL database suitable for ingesting

and searching large amounts of text data.

Platform components to be monitored have been selected based on their criticality and

exposure to the internet, and are the following:

1. Keycloak: all authentication/authorization is centralized here, so it is crucial to

monitor successful and failed authentication attempts, IP and the country origin of the

attempt, access token errors and other Keycloak-specific event types

2. NGINX: this represents the main “gateway” from the internet to the various platform

components. By logging every request passing through NGINX, it is possible to observe

attack patterns, determine which platform component is being targeted, and act upon

this knowledge (implement firewall rules, harden applications running behind NGINX,

etc...)

3. Kafka: Kafka will be another important “gateway” for data exchange between the

HosmartAI platform and Pilot applications, hence the importance to monitor accesses

and statistics of data passing through it

4. Jenkins: as a CI/CD platform, some of the platform components will be automatically

deployed using Jenkins. Over the last few years, supply-chain attacks targeting CI/CD

platforms have proven to be successful and difficult to detect without proper

monitoring. Inside HosmartAI, user authentication, configuration changes and

pipeline actions are all monitored.

Some other components are new or not yet in their final deployment state, but will be

monitored too once possible:

1. JupyterHub: enables code execution and collaboration by researchers and developers.

Code execution is a powerful capability for attackers too, so proper monitoring and

traceability are critical to implement

2. Marketplace: as a web application that will be exposed to the internet, it will inevitably

be targeted by automated vulnerability scanners and fuzzers

A set of dashboards, along with read-only access for project partners who requested it, have

been implemented in Kibana, the graphical user interface for Elasticsearch. Keycloak, NGINX,

Jenkins and Kafka are all regularly monitored for unusual activity.

Future improvements include automated alerting using custom rules implemented for

HosmartAI.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 67

4.3 Updated elements

In this section, we will present the elements that are maintained from one iteration to the

next and have been updated, either in operation or implementation.

4.3.1 KeyCloak implementation
Keycloak has been configured to handle the login requests from various platform components

and can be configured for external components as well. For example, when someone tries to

access JupyterHub using HosmartAI credentials, they are presented with a form to provide

their credentials, which is generated by Keycloak. Upon successful login, the user is redirected

back to the component they initially requested to access, e.g., JupyterHub.

4.4 New version

Figure 58: New architecture diagram.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 68

 Conclusion
As a result of time and research into different components of the platform, the first version

of the architecture has undergone changes to improve the end-user experience.

To this end, some elements that made no sense within the architecture have been eliminated.

At the same time, others have been updated, changing how they are integrated, or the

version originally used. New elements have also been added since it has been detected that

they were missing to cover certain needs of the system.

At the same time, the different platforms involved in the architecture have been analysed and

explained in depth, dividing them into digital and physical platforms.

D4.2 – Platform Architecture Design and Open APIs –

Second version
H2020 Contract No 101016834 Final – v1.0, 2023-01-31

Dissemination level: PU -Public Page 69

 References

[REF-01] https://github.com/domaindrivendev/Swashbuckle.AspNetCore

[REF-02] https://www.apibldr.com/

[REF-03] https://gaia-x.eu/

[REF-04] https://www.docker.com/

[REF-05] https://github.com/docker/compose

[REF-06] https://maven.apache.org/maven-features.html

[REF-07] https://camel.apache.org/camel-core/

[REF-08] https://spring.io/projects/spring-framework

[REF-09] https://camel.apache.org/camel-spring-boot/3.20.x/

[REF-10] https://hapifhir.io/hapi-fhir/docs/server_jpa/architecture.html

[REF-11] https://sentry.io/

[REF-12] https://github.com/thomaxxl/safrs

https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://www.apibldr.com/
https://gaia-x.eu/
https://www.docker.com/
https://github.com/docker/compose
https://maven.apache.org/maven-features.html
https://camel.apache.org/camel-core/
https://spring.io/projects/spring-framework
https://camel.apache.org/camel-spring-boot/3.20.x/
https://hapifhir.io/hapi-fhir/docs/server_jpa/architecture.html
https://sentry.io/
https://github.com/thomaxxl/safrs

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Definitions, Acronyms and Abbreviations
	1 Introduction
	1.1 Project Information
	1.2 Document Scope
	1.3 Document Structure

	2 Integrated Open Platforms
	2.1 Digital Platforms
	2.1.1 Acumos AI Platform
	2.1.2 Apache Maven
	2.1.3 Apache Camel and Spring Boot
	2.1.4 Discourse
	2.1.5 Docker
	2.1.5.1 Docker in Platform
	2.1.5.2 Docker in Pilot 5 [UM]

	2.1.6 GreenSoft
	2.1.6.1 The GreenSoft
	2.1.6.2 Edge network
	2.1.6.3 Edge Cloud

	2.1.7 HAPI-FHIR Platform
	2.1.8 JupyterHub
	2.1.9 Keycloak
	2.1.9.1 Keycloak in Platform
	2.1.9.2 Keycloak in Pilot 3
	2.1.9.3 Keycloak in Pilot 5

	2.1.10 Sentry
	2.1.11 SonarQube
	2.1.12 Sonatype Nexus OSS
	2.1.13 Spark
	2.1.14 Swagger
	2.1.14.1 Swagger in Pilot 3
	2.1.14.2 Swagger in Pilot 5

	2.2 Physical Platforms
	2.2.1 Arduino
	2.2.2 Capsule Endoscopy System
	2.2.3 Clarius PA HD Scanner
	2.2.4 MagnoFlush
	2.2.5 Maxim 32660
	2.2.6 Navion (Magnebotix)
	2.2.7 Pepper Robot
	2.2.7.1 Pepper Robot in Pilot 5
	2.2.7.2 Pepper Robot in Pilot 6

	2.2.8 Smart Digital Monitors
	2.2.9 Gradior Management System and APP Gradior
	2.2.10 VIMAR View Wireless system
	2.2.10.1 Network and Communication
	2.2.10.2 Available Devices

	2.2.11 Windows and Android Tablets, Smartphones, for View VIMAR APP and iMat.
	2.2.11.1 App View and View Wireless

	2.2.12 YOI-6 router (embedded blockchain node) - SBC with Wi-Fi or 4G interfaces

	3 OpenAPI Specification
	3.1 Tools for managing OpenAPIs
	3.1.1 Generators
	3.1.1.1 Swashbuckle (NET Core)
	3.1.1.2 safrs (Python)
	3.1.1.3 NelmioApiDocBundle (PHP-symfony)
	3.1.1.4 Swagger Maven Plugin
	3.1.1.5 drf-yasg (Yet another Swagger generator)
	3.1.1.6 HAPI swagger

	3.1.2 GUI Editors
	3.1.2.1 ApiBldr
	3.1.2.2 Swagger Editor

	4 Updated HosmartAI Architecture Design
	4.1 Previous version
	4.2 New elements
	4.2.1 Nexus repository
	4.2.2 Security VM

	4.3 Updated elements
	4.3.1 KeyCloak implementation

	4.4 New version

	5 Conclusion
	6 References

