

This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under agreement No 101016834. The content of this document reflects only the author's view and the European
Commission is not responsible for any use that may be made of the information it contains.
The document is the property of the HosmartAI consortium and shall not be distributed or reproduced without the approval
of the HosmartAI Project Coordination Team. Find us at www.hosmartai.eu.

Project Acronym: HosmartAI

Grant Agreement number: 101016834 (H2020-DT-2020-1 – Innovation Action)

Project Full Title: Hospital Smart development based on AI

DELIVERABLE

D4.1 – Platform Architecture Design and Open APIs

Dissemination level: PU -Public

Type of deliverable: R -Report

Contractual date of delivery: 31 January 2022

Deliverable leader: ITCL

Status - version, date: Final – v1.0, 2022-01-31

Keywords: Platform architecture, Open APIs

This project has received
funding from the European
Union’s Horizon 2020
research and innovation
programme under grant
agreement No 101016834

http://www.hosmartai.eu/

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 2

Executive Summary
This document presents the first version of the HosmartAI Platform Architecture and Open

APIs. The conceptual architecture from D1.5 and T1.3 outputs are analysed, identifying

common layers between pilots, and transforming the requirements into elements to be

added to the final architecture.

Also, data inputs and outputs for each pilot are analysed and a common API is defined to

standardize the flow of information between the pilots and the platform. This part of the

project is focused on the identification of all the key components of the platform and how the

interconnection is made.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 3

Deliverable leader: Sergio Chico, Daniel Lozano (ITCL)

Contributors:
Sergio Chico, Daniel Lozano (ITCL), Pauline Loygue (GC), Luca Gilardi
(EXYS)

Reviewers: Makis Karadimas, Giannis Sarantidis (INTRA), Pauline Loygue (GC)

Approved by: Athanasios Poulakidas, Irene Diamantopoulou (INTRA)

Document History

Version Date Contributor(s) Description

0.1 2021-09-23 Sergio Chico (ITCL) Document creation

0.2 2021-10-13 Daniel Lozano, Sergio
Chico. (ITCL)

First version of sections for the ToC,
Executive Summary.

0.3 2022-01-14

Pauline Loygue (GC)
Daniel Lozano, Sergio
Chico (ITCL)

Luca Gilardi (EXYS)

Review
Introduction, Architecture elements
description and diagram, APIs-
OpenAPIs, corrections.
Data security and privacy (Section 2.2)

0.4 2022-01-21 Reviewed, Pre-Final Version

1.0 2022-01-31 Athanasios Poulakidas,
Irene Diamantopoulou
(INTRA)

Final version for submission

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 4

Table of Contents
Executive Summary .. 2

Table of Contents ... 4

List of Figures ... 5

List of Tables .. 6

Definitions, Acronyms and Abbreviations ... 7

1 Introduction ... 8

1.1 Project Information ... 8

1.2 Document Scope ... 10

1.3 Document Structure .. 10

2 Requirement’s analysis .. 11

2.1 Platform requirements .. 11

2.1.1 Introduction ... 11

2.1.2 AI Software integration .. 16

2.1.3 Blockchain integration ... 17

2.1.4 The HosmartAI Frontend ... 19

2.1.5 Data integration ... 21

2.2 Data security and privacy .. 22

2.2.1 Security requirements ... 22

2.2.2 Data protection methods ... 24

2.2.3 Traceability of the information .. 29

2.3 Edge Cloud ... 30

2.4 Open API .. 31

2.4.1 API Documentation .. 31

2.4.2 API Specification .. 32

2.4.3 API Definition ... 32

2.4.4 API Visualization ... 32

2.4.5 Third party OpenAPI platform elements ... 33

3 HosmartAI Architecture Design ... 39

3.1 Principal elements ... 39

3.2 HHub .. 47

3.2.1 Marketplace ... 47

3.2.2 Co-creation Hub ... 48

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 5

3.2.3 Benchmarking .. 52

3.2.4 Dashboard .. 56

4 Conclusion .. 57

5 References ... 58

List of Figures
Figure 1: Conceptual Architecture. .. 11

Figure 2: HosmartAI Platform. ... 14

Figure 3: Benchmarking service. .. 15

Figure 4: AI Development flow. ... 17

Figure 5: Blockchain service architecture. ... 18

Figure 6: Health Level Seven Standards. .. 21

Figure 7: Edge Cloud infrastructure description. ... 31

Figure 8: OpenAPI YAML example. .. 33

Figure 9: API Visualization tool (Swagger). .. 33

Figure 10: JupyterHub OpenAPI. .. 34

Figure 11: Discourse OpenAPI.. 35

Figure 12: Slack OpenAPI. .. 36

Figure 13: Acumos LUM OpenAPI (YAML). .. 37

Figure 14: Acumos LUM OpenAPI (Swagger). .. 38

Figure 15: HosmartAI Architecture Diagram. .. 39

Figure 16: Docker infrastructure. ... 41

Figure 17: Ansible infrastructure. .. 42

Figure 18: Nginx infrastructure. ... 43

Figure 19: Acumos AI platform. ... 44

Figure 20: Keycloak data flow. ... 46

Figure 21: Consul infrastructure. ... 47

Figure 22: JFrog Artifactory Infrastructure. ... 50

Figure 23: SonarQube Infrastructure Pipeline. .. 51

Figure 24: Jenkins Pipeline. .. 52

Figure 25: JupyterHub infrastructure. ... 54

Figure 26: Kafka infrastructure. ... 55

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 6

List of Tables
Table 1: The HosmartAI consortium. ... 9

Table 2: List of needs and related requirements for data protection. 24

Table 3: List of needs and related requirements for data selection. 25

Table 4: List of needs and related requirements for data verification. 26

Table 5: List of needs and related requirements for authentication and access control. 27

Table 6: List of needs and related requirements for event management............................... 28

Table 7: List of needs and related requirements for traceability of the information. 29

Table 8: Docker requirements. .. 40

Table 9: Ansible requirements. .. 41

Table 10: Nginx requirements.. 43

Table 11: Acumos requirements. ... 44

Table 12: ROS requirements. ... 45

Table 13: Keycloak requirements. ... 45

Table 14: Consul requirements. ... 46

Table 15: Drupal requirements. ... 47

Table 16: .NET Blazor requirements. ... 48

Table 17: Discourse requirements. .. 49

Table 18: JFrog Artifactory requirements. ... 49

Table 19: Slack requirements... 50

Table 20: SonarQube requirements. ... 51

Table 21: Jenkins requirements. .. 52

Table 22: Python Benchmarking libraries requirements. .. 52

Table 23: Benchmarking database driver requirements. .. 53

Table 24: JupytherHub requirements. ... 53

Table 25: Kafka requirements. ... 55

Table 26: MongoDB requirements. ... 56

Table 27: Angular requirements. ... 56

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 7

Definitions, Acronyms and Abbreviations

Acronym/
Abbreviation

Title

API Application Programming Interface

DoA Description of Action

EHR Electronic Health Record

HHub HosmartAI Hub

HL7 Health Level 7

HL-FHIR Health Level 7 – Fast Healthcare Interoperability Resources

KPI Key Performance Indicator

RAF Reference Architecture Framework

SME Subject Matter Expert

WP Work Package

Term Definition

Consortium Group of beneficiaries that have signed the Consortium Agreement
and the Grant Agreement (either directly as Coordinator or
by accession through the Form A).

Consortium
Agreement

Contractual document signed by all the beneficiaries (and not the EC),
explaining how the Consortium is managed and works together.

Deliverable
Leader

Responsible for ensuring that the content of the deliverable meets the
required expectations, both from a contractual point of view and in terms
of usage within the project. Is also responsible for ensuring that the
deliverable follows the deliverable process and is delivered on time.

Description of
Action

Annex 1 to the Grant Agreement. It contains information on the work
packages, deliverables, milestones, resources and costs of the beneficiaries,
as well as a text with a detailed description of the action. The DoA is made
of Part A (structured data collected in web forms and workplan tables) and
Part B (text document describing the action elements).

Dissemination EC term for communication of information to a wide audience.

Grant
Agreement

Contractual document which defines the contractual scope of the
HosmartAI project. It is signed between the EC and the beneficiaries.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 8

1 Introduction

1.1 Project Information

 The HosmartAI vision is a strong, efficient, sustainable and resilient European

Healthcare system benefiting from the capacities to generate impact of the

technology European Stakeholders (SMEs, Research centres, Digital Hubs and

Universities).

 The HosmartAI mission is to guarantee the integration of Digital and Robot

technologies in new Healthcare environments and the possibility to analyse

their benefits by providing an environment where digital health care tool

providers will be able to design and develop AI solutions as well as a space for

the instantiation and deployment of AI solutions.

HosmartAI will create a common open

Integration Platform with the

necessary tools to facilitate and

measure the benefits of integrating

digital technologies (robotics and AI) in

the healthcare system.

A central hub will offer multifaceted

lasting functionalities (Marketplace,

Co-creation space, Benchmarking) to

healthcare stakeholders, combined

with a collection of methods, tools and solutions to integrate and deploy AI-enabled solutions.

The Benchmarking tool will promote the adoption in new settings, while enabling a meeting

place for technology providers and end-users.

Eight Large-Scale Pilots will implement and evaluate improvements in medical diagnosis,

surgical interventions, prevention and treatment of diseases, and support for rehabilitation

and long-term care in several Hospital and care settings. The project will target different

medical aspects or manifestations such as Cancer (Pilot #1, #2 and #8); Gastrointestinal (GI)

disorders (Pilot #1); Cardiovascular diseases (Pilot #1, #4, #5 and #7); Thoracic Disorders (Pilot

#5); Neurological diseases (Pilot #3); Elderly Care and Neuropsychological Rehabilitation (Pilot

#6); Fetal Growth Restriction (FGR) and Prematurity (Pilot #1).

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 9

To ensure a user-centred

approach, harmonization in

the process (e.g., regarding

ethical aspects,

standardization, and

robustness both from a

technical and social and

healthcare perspective), the

living lab methodology will be employed. HosmartAI will identify the appropriate instruments

(KPI) that measure efficiency without undermining access or quality of care. Liaison and co-

operation activities with relevant stakeholders and open calls will enable ecosystem building

and industrial clustering.

HosmartAI brings together a consortium of leading organizations (3 large enterprises, 8 SMEs,

5 hospitals, 4 universities, 2 research centres and 2 associations – see Table 1) along with

several more committed organizations (Letters of Support provided).

Table 1: The HosmartAI consortium.

Number1 Name Short name
1 (CO) INTRASOFT INTERNATIONAL SA INTRA

1.1 (TP) INTRASOFT INTERNATIONAL SA INTRA-LU

2 PHILIPS MEDICAL SYSTEMS NEDERLAND BV PHILIPS

3 VIMAR SPA VIMAR

4 GREEN COMMUNICATIONS SAS GC

5 TELEMATIC MEDICAL APPLICATIONS EMPORIA KAI ANAPTIXI
PROIONTON TILIATRIKIS MONOPROSOPIKI ETAIRIA
PERIORISMENIS EYTHINIS

TMA

6 ECLEXYS SAGL EXYS

7 F6S NETWORK IRELAND LIMITED F6S

7.1 (TP) F6S NETWORK LIMITED F6S-UK

8 PHARMECONS EASY ACCESS LTD PhE

9 TERAGLOBUS LATVIA SIA TGLV

10 NINETY ONE GMBH 91

11 EIT HEALTH GERMANY GMBH EIT

12 UNIVERZITETNI KLINICNI CENTER MARIBOR UKCM

13 SAN CAMILLO IRCCS SRL IRCCS

14 SERVICIO MADRILENO DE SALUD SERMAS

14.1 (TP) FUNDACION PARA LA INVESTIGACION BIOMEDICA DEL
HOSPITAL UNIVERSITARIO LA PAZ

FIBHULP

15 CENTRE HOSPITALIER UNIVERSITAIRE DE LIEGE CHUL

16 PANEPISTIMIAKO GENIKO NOSOKOMEIO THESSALONIKIS
AXEPA

AHEPA

17 VRIJE UNIVERSITEIT BRUSSEL VUB

18 ARISTOTELIO PANEPISTIMIO THESSALONIKIS AUTH

19 EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ

20 UNIVERZA V MARIBORU UM

1 CO: Coordinator. TP: linked third party.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 10

Number1 Name Short name
21 INSTITUTO TECNOLÓGICO DE CASTILLA Y LEON ITCL

22 FUNDACION INTRAS INTRAS

23 ASSOCIATION EUROPEAN FEDERATION FOR MEDICAL
INFORMATICS

EFMI

24 FEDERATION EUROPEENNE DES HOPITAUX ET DES SOINS DE
SANTE

HOPE

1.2 Document Scope

The deliverable aims to provide the first version of the HosmartAI architecture, based on the

outcome of the D1.5 and the analysis of the technical requirements for each pilot. Also, this

deliverable provides other key elements, like security, data privacy and interoperability

methods to complete HosmartAI architecture.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.

Chapter 2 analyses the requirements and defines the architecture features.

Chapter 3 explains and describes the final version of the HosmartAI architecture.

Chapter 4 provides some concluding remarks.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 11

2 Requirement’s analysis

2.1 Platform requirements

2.1.1 Introduction
With the aim of creating a solid, functional and useful platform to accomplish all the proposed

features of the external elements, information from other tasks of the project will be gathered

and an analysis of the platform technical requirements and platform related components will

be done.

For that, the design of the first version of the architecture is based on the diagram of the

conceptual architecture, that has the following elements:

Figure 1: Conceptual Architecture.

During the development of this task, changes to the architecture will be made as necessary

to fulfil all the new requirements discovered in previous tasks.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 12

2.1.1.1 Application layer

2.1.1.1.1 Marketplace

The HosmartAI Marketplace includes all components, devices, services, data sources,

platforms, etc. that are available for exploitation. The project’s marketplace will support the

development of applications with access to technologies, but also with training material,

documentation, and other useful data.

The user interface displayed in the dashboard will be a Web-based catalogue of items, where

each item will have a name, a description, and some additional specific information fields.

The different items can be Components, devices, services, data sources, platforms, datasets,

etc.

Feedback from end users through the benchmarking tool should be able to be used in the

marketplace for sorting/filtering/recommendation.

The benchmarking process is specific for each application, employing a predefined set of

variables that are representative of the concrete case of use, and producing a particular set

of measurements. Therefore, the comparisons of two resources should only be possible when

using the same input variables.

Other filters can be applied to search through items, like filter items by name, type,

benchmarking results, etc.

The HosmartAI Marketplace will be able to pull resources from the AI4EU project that will

complement the already available ones. Also, the marketplace will provide information about

already available services in digital innovation hubs such as DIH-HERO.

One of the most important assets to support the development and proper execution of AI

algorithms is the specific data set to be used by third party developers in Open Calls. The

HosmartAI Marketplace will provide those as well as the ability for stakeholders coming from

both the demand side and the supply side to participate.

The marketplace must meet certain characteristics to fulfil the objectives set by the project.

It must be able to serve any service or application in a reasonably low time and in a way that

is understandable for the system that is making the request.

The connection needs are high, since it will have many requests and high information traffic,

so the connection channels must be wide.

2.1.1.1.2 Co-creation

The HosmartAI Co-creation Space is used during the co-creation process, in which healthcare

stakeholders, service advisors and providers can select together the most appropriate set of

tools, devices, components and data sources. To do this, they can also examine the existing

resources and their performance through the HosmartAI Benchmarking Framework. Many of

those can be already deployed at hospitals, primary care centres and care homes and thus

provide valuable information that can be used to set expectations and improve goals.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 13

The Co-creation Space can be used for the set of standards, APIs, interoperability mechanisms

and data models that will be employed in the process of creating a new HosmartAI enabled

application, some examples of co-creation platforms that can be incorporated into the

HosmartAI platform can be AI4EU (Acumos), GAIA-X or OPEN DEI.

2.1.1.1.3 Dashboard

The HosmartAI Dashboard will provide the main entry point to the HosmartAI platform.

The Dashboard will be accessed via web browser. The interface will be device-independent,

making it able to access the system with different web browsers, and different devices with

different Operative Systems, both mobile and desktop.

The technologies used to develop the dashboard will be ASPX.NET (Devexpress XAF), Blazor

pages (C# .NET/WebAssembly) and PHP (for WordPress or other content management

system).

Security should be a priority on the dashboard, as this is the place where the users interact

with the platform. Security elements like privacy, data integrity, authentication and

authorization should be taken into consideration in the development of the platform.

Authentication and authorization can be addressed by using JWT tokens.

The Dashboard architecture will be decoupled, offering communication with different

modules via gRPC services, a REST API or both. This underlying API layer will map the functions

of the benchmarking, marketplace, and co-creation to be presented to the users.

The Dashboard will also offer access to each user’s personal account and allow them to

perform administration tasks to customize their participation to Co-creation, Benchmarking

and Marketplace.

2.1.1.1.4 Application solutions

Application solutions that will be developed will be able to combine different types of tools

and frameworks for their main functionality regarding its inner workings, but also interfaces

to interact with end-users.

Here we have the different interfaces for users to operate the different applications. We

include here the scheduler interface for example. As well as other interfaces like the ones

used for the application catalogue, recommendations, or other purposes. All of them will be

hosted by the HosmartAI platform.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 14

Figure 2: HosmartAI Platform.

2.1.1.2 AI Services

2.1.1.2.1 Benchmarking

The HosmartAI Benchmarking Framework assessment will help identify ways to improve

healthcare services and applications through establishing measurable indicators and putting

feedback mechanisms in place.

Due to the necessity of processing a large amount of data that the project presents, along

with the specific needs of visualization and data mining, Apache Spark will be the solution.

This is a system that allows the execution of large amounts of calculations in parallel,

distributed among several nodes, and is specially designed for the study of relationships

between variables, their filtering, and the application of algorithms.

The system needs Python for executing all the tasks, so will include pyspark library also to

work along Apache Spark. For this integration, Anaconda is the right tool to provide necessary

Python implementation and a series of libraries that allow certain calculations to be carried

out in parallel within the processors, which will also be useful in the project development. In

addition, Anaconda allows the development and implementation of a wide variety of ML

algorithms.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 15

Figure 3: Benchmarking service.

Finally, Mongo database is needed for the data storage necessary for the execution of our

codes. MongoDB is not resource intensive, at the same time it can deal with relatively large

amounts of data, which makes it well suited for the need of the platform.

2.1.1.2.2 Artificial Intelligence and Visualization

Artificial Intelligence algorithms can be used to automate image processing and analysis of

medical data to produce an augmented visualization of data to include analysis results in a

way that makes it easy to interpret by medical practitioners. One example is the algorithm to

support AI-augmented echocardiography applications and automate image processing and

quantitative analysis of Left Ventricular (LV) function.

All the models and datasets can be onboarded within the platform and will be offered in the

application catalogue so that they can be used by anyone who need the information to do

their tasks.

2.1.1.2.3 Data Management and Knowledge Sharing

The goal of Data Management will be that of addressing and enabling Big Data, as well as

facilitating knowledge sharing through data translation mechanisms that use common

standards. An example of this is the development of tools to map the electrical activity of the

heart by companies that record ECG signals with the goal of integrating with various sources

and standardizing the data set across different models and device types.

2.1.1.3 AI Platform core components

This layer consists of:

• A large set of adapters that enable the integration and interoperability of applications

for smart hospitals. The specifications for these adapters include:

o Common interfaces, for example based on OpenAPI

o Data pipelines utilizing the publish-subscribe pattern to distribute information

o Common standards

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 16

• Security and traceability services enabling privacy preservation that will be embedded

throughout the entire operational system lifecycle

• Common tools abstracting the medical device monitoring functionalities

• Tools to compose a microservices-based application

• Tools and environment to deploy and control the microservices-based applications

2.1.1.4 Infrastructure layer

This layer includes the infrastructure, such as the following:

• Assets that are used to store data as well as train and execute AI algorithms. The data

might originate from Electronic Health Records (EHR), Hospital Information Systems

(HIS) or other sources of non-clinical data, such as lifestyle and demographics.

• Medical devices and robotics.

• Added value third-party platforms which can offer high-level APIs, extra features, and

libraries.

• Other computing, connectivity, and Big Data storage infrastructure.

2.1.1.4.1 Computing, Connectivity and Storage

Data collected by medical devices might need to be stored in cloud-based servers to support

telehealth consultations. Also, the data from many different devices need to be backed up in

a common cloud to avoid information lost in case of hard disk corruption.

2.1.2 AI Software integration
AI tools and algorithms will be available for development through JupyterHub or Acumos AI

Platform.

Through JupyterHub, a user can create a server that will be able to execute Python code.

Commands can also be directed to the system console to install additional libraries, such as

“pip install --extra-index-url https://partner.com/pypi partner-library1”. This is done by using

the special character “%” at the front of the command to be redirected to the system (“%pip

install…”). Preinstalled libraries can enable the usage of the following libraries and tools:

• Scikit-Learn

• Apache Spark

• TensorFlow

• Keras

• Pandas

• Kafka

• ROS

The user can then experiment with these libraries and produce code that creates the intended

output. The Jupyter Notebook that contains the code and the resulting output can be saved

and shared with other users. Also, through the usage of system commands the code can be

packaged to another format (e.g., tarball) and be used to create a HosmartAI Application

Model which in turn can be onboarded to the HosmartAI Marketplace. The same code can

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 17

also be pushed to the GIT repo of the project and, through the CI/CD process, deploy an

Application in the HosmartAI Application Space.

To login into JupyterHub, someone can use the same credentials that they use for the HHub

provided special permissions concerning the usage of JupyterHub have been granted. As

shown in Figure 4, this can be achieved through the integration of JupyterHub and HHub with

Keycloak.

Figure 4: AI Development flow.

Through the Acumos AI Platform, the user can utilize existing AI4EU models by onboarding

them to the Acumos Platform that is part of HosmartAI Platform architecture. The same can

be done with H2O.ai models, which are supported by the Acumos platform as well. The

applications that are part of the HHub, either as listings on the Marketplace or as deployed

application in the HosmartAI Application Space can then potentially refer or point to

applications that have been onboarded to Acumos or developed on JupyterHub.

2.1.3 Blockchain integration
The blockchain service will be deployed on-premise (at the edge) on a dedicated Internet

infrastructure that will not interfere with the hospital or care facility’s network.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 18

Figure 5: Blockchain service architecture.

The figure above (Figure 5) describes the architecture of the service.

• The first layer is the Edge Cloud. The edge cloud is an on-premise computing

connectivity and storage module composed of edge nodes dedicated to the

blockchain. The nodes will also offer Wi-Fi and Ethernet interfaces for IP connectivity.

This module contains an embedded web server NGINX. Interaction with the

Blockchain is done through WebDAV interface. A description of the edge cloud

infrastructure is detailed in Section 2.3.

• The second layer is the Blockchain. The blockchain service is hosted, processed and

synchronized among each node of an edge cloud. Blockchain features are detailed in

the WP2 deliverables.

• The Transaction Generator layer consists of the data that will feed the blockchain.

Robots and IoT devices deployed in Pilots #5 and #6 will generate data. Data that are

worth to be traced is packaged into files. Files are uploaded manually to the blockchain

with a simple web browser or automatically via a WebDAV interface.

• The blockchain visualization layer is a web interface that one may use for watching

and navigating through the blockchain, getting blocks and transactions details, etc.

2.1.3.1 Technology definition

Blockchain is a technology for storing and transmitting non-modifiable information. The

blockchain consists of a distributed, secure and decentralized database and is composed of

data structures called blocks. Each block contains a set of transactions that are brought to the

blockchain to be integrated - a transaction can be defined as a piece of information that can

represent any kind of information. Once a new block of data is formed, it is linked to the

previous block by including the reference of the latter in its metadata (header), thus giving a

chain structure. An encryption of blocks against each other makes the blockchain a non-

modifiable system. The blockchain operates over a distributed network of nodes with

networking, computing and storage capacity. Each node owns a copy of the blockchain and

can contribute to it.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 19

2.1.3.2 Preferred network for the project

The network chosen for the project is a dedicated computing connectivity and storage module

called the edge cloud described in Section 2.3.

2.1.3.3 Added value of working with blockchain

Blockchain aims at creating trust among Parties that wish to share data (e.g., patient with

hospital, hospitals among each other, hospital vs third party, etc.). Instead of calling for a

Third Party to control transactions in a centralized way, the Parties rather use a distributed

system called blockchain.

The main advantage of the blockchain is that the log of the data shared among the Parties

will be replicated over all the nodes of the edge cloud and possibly on a cloud device to avoid

that someone could modify the data. Integrity of the data is the property that the blockchain

guarantee. Parties owning one or more nodes can equally visualize, verify, and participate to

the blockchain.

2.1.4 The HosmartAI Frontend
The HosmartAI Frontend should be the single point of entrance for every user, regardless of

the usage scenario.

2.1.4.1 Presentation - UI/UX requirements for the platform to fulfil the user needs

The HosmartAI Frontend should be accessible from any place and any device. Therefore, it

should be implemented as a web application running within a browser. There are countless

frameworks and technologies to develop a web application, however not many fit the diverse

requirements imposed to HosmartAI Frontend. As far as UI/UX requirements are concerned,

the Frontend should be presented itself as a single page application (SPA). This is not only for

aesthetics but for performance too. Instead of navigating back and forth between links, the

user is within a unified environment where he can access all the components of HosmartAI.

Equally important is to use an open-source framework with strong support, well –

documented and avoid proprietary, black-box type of solutions as much as possible. The

entire Frontend application should be able to be hosted in either Windows or Linux or MacOS

systems.

All things considered, the technology of choice for the implementation of HosmartAI Frontend

is Blazor. The name Blazor is a combination/mutation of the words Browser and Razor (the

.NET HTML view generating engine). The innovation is that instead of having to execute Razor

views on the server in order to present HTML to the browser, Blazor is capable of executing

these views on the client. Of course, it supports executing SPAs on the server.

Blazor does not require any kind of plugin installed on the client in order to execute inside a

browser. Blazor either runs server-side, in which case it executes on a server and the browser

acts as a dumb terminal, or it runs in the browser itself by utilising WebAssembly.

Because WebAssembly is a web standard, it is supported on all major browsers, which means

also client-side Blazor apps will run inside a browser on Windows/Linux/Mac/Android and

iOS.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 20

WebAssembly (abbreviated Wasm) is a safe, portable, low-level code format designed for

efficient execution and compact representation. Its main goal is to enable high performance

applications on the Web, but it does not make any Web-specific assumptions or provide Web-

specific features, so it can be employed in other environments as well. [REF-01]

Interfacing with external modules can be implemented in two basic ways:

• API integration

• Direct hosting

API integration suggests that the functionality of attached modules will be exposed via API

calls, either implemented in REST or gRPC. Direct hosting means that there will be a link to

the module / system. Such an example is the user forum which will be included.

2.1.4.2 Security

We can identify two security planes: a user-plane and a system-plane. At the user-plane, we

want to avoid an unauthorized user entering the system or any user accessing components

he is not supposed to. At the system-plane, the main requirement is to avoid access to any

component of the HosmartAI infrastructure. An example would be an unauthorized call to

one of the APIs.

In order to address the security of user access, a time-proven solution such as SSO (Single –

Sign On) could be used and open standards such as OAUTH. Such a system is Keycloak which

is an open-source Identity and Access Management solution supported by RedHat. It

supports, apart from SSO, integration with LDAP and Active Directory, standard protocols

such as OpenID Connect, OAuth 2.0 and SAML 2.0. It also features central management and

most importantly REST API for easy integration with other systems.

Regarding system-wide security, there are two main solutions. The first is related with a

system such as Keycloak which can issue a JSON Web Token (JWT) that is used between

communicating parties, specifically to address the safety between API calls. In effect, the

calling party contains the token that proves that is an authorized and legit entity to call other

HosmartAI endpoints.

The second solution relies mostly on network security: strict firewall rules can safeguard

endpoints from unauthorized access. Of course, these two approaches could co-exist and

complement each other.

2.1.4.3 Adaptability

The Frontend will be able to provide differentiated functionality depending on the type of

user. This will be achieved by a set of rules that will dictate the type of resources and APIs a

user has the right to access. These rules can be expressed in a custom JSON format and have

the form of a configuration file. The decoupled integration via APIs also provides some

flexibility towards potential changes which in practical terms means that potential changes in

a module, will not require system-wide changes.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 21

2.1.5 Data integration
Data integration methods should be clear to manage all the data in an efficient way. The 3D

geometry is received and generated by the cardiac mapping system and if available a list of

targets for the cardiac ablation. The data received will be used during the navigation and not

be stored at the end of the navigation task. No clinical data will be generated by the robotic

platform as we do not have sensors that provide feedback.

Develop an interface to mapping system and process EP map with AI in order to improve map

quality and minimize damage to the heart from said procedure. Then evaluate/validate the

improved EP map. This is the data that will be received for robotic navigation.

2.1.5.1 HL7

HL7 standards or HL7 protocols indicate how information is organized and communicated

between two components. These standards define the language, structure and types of data

required for seamless integration between health systems.

HL7 is a set of standards for the application level. That is, it is defined at OSI level 7 because

it is specifically a protocol for data exchange at that level.

Level 7 provides applications with the ability to access lower layer protocols, and defines the

protocols that applications use to exchange data. This means that HL7 messages could be

exchanged via TCP, or FTP, or HTTP.

Figure 6: Health Level Seven Standards.

2.1.5.2 Image/genome data integration.

By improving and automating the process of data collection, while preserving patient data

privacy, a platform for research will be effectively provided. This includes (i)

pseudonymization routines that comply with current privacy legislation and adhere to ethical

approval; (ii) automated import workflows for each type of data from online or hospital

information systems; (iii) fine-grained user access and logging to ensure data protection; (iv)

interface to launch processing pipelines directly from the platform. Based on the invaluable

experience of the ICT department of UZ Brussel, a modular approach will be adopted by

separating the import routines as much as possible, so that extension to other sources and

pathologies is possible.

The database will be integrated into a joint platform, which will enable (i) access to integrated

patient data, also available off-site by pseudonymization of data; (ii) the automated extraction

of clinically relevant findings from imaging and molecular data from parallel research; (iii)

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 22

predictive ML based models using multifactorial patient information, and the associated

uncertainties of such models.

2.2 Data security and privacy

Data security and privacy are of paramount importance in the today technological panorama,

where communication of information is performed on a global scale and where huge amounts

of data are exchanged in fractions of a second, therefore easily exposing sensible information

to be stolen or damaged during cyber-attacks. The health and medical sector are even more

touched, because of the sensitivity of the information exchanged in relation to the privacy

necessities. The HosmartAI system and platform, covering the health domain and involving

different pilots and installations geographically spread on a vast area, must therefore be duly

securitized.

Platform’s security, privacy as well as data protection and traceability general approach and

requirements for the HosmartAI system were already investigated in the deliverable ‘D2.1

Design of Common AI, Benchmarking and Security Pillars’.

In this section, security, privacy and traceability needs and provisions to the platform to fulfil

all the security requirements are defined and described, based on the outcomes reached so

far and on the HosmartAI platform architecture presented in this deliverable (Chapter 3). As

the status of the project’s implementation is getting more mature, and more details about

the final deployed architecture are emerging, a more implementation-approach about

security than in the previous deliverables can be taken into account here. In particular, the

single components of the architectures, as well as the interrelations and communications

links among them and with the extern, are considered in relation to the security, privacy and

traceability needs.

2.2.1 Security requirements
Security requirements were defined in detail in ‘D1.5 HosmartAI Platform Conceptual

Architecture’ and put in the project’s JIRA Technical Requirements. Basically, the key concepts

about security/privacy/traceability needs that emerged during the investigation stage can be

summarized by the non-functional requirements described there, as follows:

• Tools: the tools ensuring security, privacy and traceability should be employed in the

system, and should be open source, when possible.

• Data processing: the processing (in particular by the AI algorithms) of the collected

information (datasets) within the system will be also performed using open-source

tools, when possible.

• Laws, standards and regulations: the security, privacy and traceability subsystem

should comply with applicable laws and regulations of the EU and Member States (or

with any other recognized regulations), when possible.

• Scalability: The system should be scalable in regard with the security, privacy and

traceability needs.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 23

• Encrypted communications: the communication over public networks within the

system and between the system and its users will be securitized by encryption, when

necessary.

• System continuity: system continuity and resilience should be guaranteed against

attacks on one or more subcomponents, against falsified or corrupted data and from

physical damaging of one or more of its components.

About the functional requirements, the main indications and provisions employed in and

come out from the study can be summed up as follows:

• Reference architecture: the system’s architecture of reference subjected to

securitization analysis is the HosmartAI’s platform architecture described in Chapter 3

of the present document (refer in particular to the block diagram of Section 3.1).

• Security audits: The deployed infrastructures (platform and pilots) and data should be

periodically submitted to security audit campaigns. A planning of the audit sessions

should therefore be prepared. Appropriate security tests (described in D2.1) are also

planned in the audits.

• Event monitoring: digital events (data exchange over networks, data storing, etc.)

should be constantly monitored. A SIEM system, monitoring the whole infrastructure

by producing system and events logs, is strongly suggested. In that case, ad-hoc

hardware/software agents (probes) can also be deployed in strategic points of the

infrastructure.

• Data selection, filtering, limiting and access: data exchanges should be filtered and

limited, lowering the risk that sensitive information is stolen or damaged. Also, access

policies to exchanged information must be provided (sensible data should be also

anonymized or pseudo-anonymized, depending on the cases). The design of the data

protection policies will be based on the content of deliverable ‘D6.7 Data

Management Handling Plan’.

• Authentication and access control: user access and authentication and system-wide

securitized access must be guaranteed (these are also described in Section 2.1.4.2 of

this document).

• Data traceability: criteria of point-to-point traceability on certain data (parameters)

that are required to be traced will be defined in policies based on the content of

deliverable ‘D6.7 Data Management Handling Plan’.

Moving to the details, in the following two chapters, data protection and traceability needs

are mapped to the security technical requirements, and for each of them, it is reported the

employable methods and tools, as well as the specification to which architecture’s

components they can be applied.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 24

2.2.2 Data protection methods

2.2.2.1 Audit on data and infrastructures

Table 2: List of needs and related requirements for data protection.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN1 Audit on data and
infrastructures:

TR-36 Monitoring of the research data
datasets

TR-46
Open-source tools for security, privacy and
traceability subsystem

TR-48
Compliance of the security, privacy and
traceability subsystem with regulations

2.2.2.1.1 Methods and Tools

• Periodic audit campaigns on all platform components and pilot infrastructures,

applying security and penetration testing methodologies and well-established

standards (D2.1, Section 5.3.3).

• Envisioned tools:

o Security Onion,

o Wireshark,

o OWASP,

o Zenmap,

o Kali Linux NetHunter.

2.2.2.1.2 Applicability to platform components

1. All HHUB’s components:

• HosmartAI Dashboard

o User Interface

o Public Space

• User Access Management

o Keycloak

o User Database (MySQL)

o User Management (Spring boot)

• Benchmarking Framework

o Benchmarking Libraries and Services

o Database (mongoDB)

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 25

o Open API (benchmarking data)

• Co-creation space

o Common AI pillars

o Data Management

o Co-creation tools

o Application deployment

• Marketplace

o Content Management (Drupal)

o Other services

2. All pilot applications and sites

2.2.2.2 Data selection

Table 3: List of needs and related requirements for data selection.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN2 Data selection: limit data
export to the ones required
by AI processing

TR-41
Data filtering and limiting

TR-47
Open-source tools for processing the collected
data

TR-49
Scalability in regard with the security, privacy
and traceability

TR-50
Encryption of communication over public
networks

TR-51
System continuity

2.2.2.2.1 Methods and Tools

Design and application of Filtering Policies based on:

• defined requester services

• specific API endpoint (Open API)

Provision of data protection policies: the design of the policies with the specification of the

exchange limits for each dataset will be based on the content of deliverable ‘D6.7 Data

Management Handling Plan’.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 26

2.2.2.2.2 Applicability to platform components

1. HHUB’s components:

• Benchmarking Framework

o Open API

• Co-creation space

o Common AI pillars

o Application deployment

• Marketplace

2. All pilot applications and sites

2.2.2.3 Data verification

 Table 4: List of needs and related requirements for data verification.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN3 Data verification/integrity
methods and anonymization
or pseudonymization

TR-42
Integrity verification of research datasets

TR-46
Open-source tools for security, privacy and
traceability subsystem

TR-48
Compliance of the security, privacy and
traceability subsystem with regulations

TR-49
Scalability in regard with the security, privacy
and traceability

TR-51
System continuity

2.2.2.3.1 Methods and Tools

• Data path and traceability, definition of plausibility criteria.

• Increase in robustness and resiliency to errors.

• Use of hashing techniques to guarantee anonymization and integrity.

• Possible use of Blockchain techniques (e.g., Ethereum blockchain) to guarantee data

integrity over time (Section 2.1.3 of this deliverable).

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 27

• Provision of data protection policies: the design of the policies with the indication of

the need of anonymization or pseudonymization for every dataset will be based on

the content of deliverable ‘D6.7 Data Management Handling Plan’.

2.2.2.3.2 Applicability to platform components

1. HHUB’s components:

• HosmartAI Dashboard

o Public Space

• Benchmarking Framework

o Database (mongoDB)

o Open API

• Co-creation space

o Data Management

o Application deployment

• Marketplace

2. All pilot applications and sites

2.2.2.4 Authentication and access control

 Table 5: List of needs and related requirements for authentication and access control.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN4 Forcing authentication and
access control

TR-43
Validation of the origin of data

TR-46
Open-source tools for security, privacy and
traceability subsystem

TR-48
Compliance of the security, privacy and
traceability subsystem with regulations

TR-50
Encryption of communication over public
networks

TR-51
System continuity

2.2.2.4.1 Methods and Tools

• Base user authentication at the HosmartAI Frontend is performed by the Keycloak

open-source identity and access management tool, already described in this deliverable

in Section 2.1.4.2.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 28

• System-wide securitized access is performed by two methods:

o Keycloak, able to issue a JSON Web Token (JWT)

o Deploying firewalling solutions at specific endpoints together with well-

defined firewalling rules. Examples of hardware firewalls that can be employed

are:

▪ EXYS9000-EFS (endpoint tunnelling and firewalling system),

▪ Snort,

▪ Suricata,

▪ SonicWall firewalls,

▪ CUJO AI,

▪ OPENsense,

▪ Sophos.

2.2.2.4.2 Applicability to platform components

1. HHUB’s components:

• HosmartAI Dashboard

o User Interface

o Public Space

• User Access Management

o Keycloak

o User Database (MySQL),

o User Management (Spring boot)

• Benchmarking Framework

o Open API

• Co-creation space

o Application deployment

2. All pilot applications and sites

2.2.2.5 Event Management

Table 6: List of needs and related requirements for event management.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN5 Event Management

TR-44
Monitoring of digital events (event logs)

TR-46
Open-source tools for security, privacy and
traceability subsystem

TR-50
Encryption of communication over public
networks

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 29

2.2.2.5.1 Methods and Tools

• Collection of data logs from all system components using syslogs, ad-hoc

hardware/software agents installed in the infrastructure (probes) and SSL based

connections to detect anomalies.

• Envisioned tools - SIEM platforms:

o EXYS7900 (Enterprise grade SIEM with hardware/software agents)

o LogRhythm,

o NextGen,

o Splunk,

o AlienVault,

o OSSIM.

2.2.2.5.2 Applicability to platform components

1. All HHUB’s components:

• HosmartAI Dashboard

o User Interface

o Public Space

• User Access Management

o Keycloak

o User Database (MySQL)

o User Management (Spring boot)

• Benchmarking Framework

o Benchmarking Libraries and Services

o Database (mongoDB)

o Open API

• Co-creation space

o Common AI pillars

o Data Management

o Co-creation tools

o Application deployment

• Marketplace

o Content Management (Drupal)

o Other services

2. All pilot applications and sites

2.2.3 Traceability of the information

Table 7: List of needs and related requirements for traceability of the information.

Need Description Related functional requirements (in black),
and non-functional requirements (in green)
[as defined in JIRA]

SN6 Traceability in heterogeneous
and aggregated datasets:

TR-45
Data traceability

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 30

TR-46
Open-source tools for security, privacy and
traceability subsystem

TR-49
Scalability in regard with the security, privacy
and traceability

TR-51
System continuity

2.2.3.1 Methods and Tools

• Definition of adequate policy and criteria of traceability on data (parameters) that are

required to be traced (for instance, complete traceability of a health parameter from

source to destination, tracking and storing all the intermediate passages, or only some

pre-declared intermediate passages (D2.1, Section 5.3.4.1). The design of the policies

with the indication of the traceability needs will be based on the content of deliverable

‘D6.7 Data Management Handling Plan’.

• Envisioned tools: use of Blockchain technology (e.g., Ethereum blockchain, as well as

the HosmartAI’s blockchain implementation, Section 2.1.3 of this deliverable) to

ensure a point-to-point and very solid traceability environment for particular data and

parameters’ requirements.

2.2.3.2 Applicability to platform components

1. HHUB’s components:

• User Access Management

o User Database (MySQL)

• Benchmarking Framework

o Database (mongoDB)

o Open API

• Co-creation space

o Data Management

o Application deployment

• Marketplace

2. All pilot applications and sites

2.3 Edge Cloud

The edge cloud is an edge-based computing connectivity and storage module provided for

some applications inside the whole ecosystem to connect robots and other IoT devices

without interfering with the hospital’s infrastructure and to host the blockchain service near

end-devices.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 31

Figure 7: Edge Cloud infrastructure description.

The figure above (Figure 7) describes the Edge Cloud architecture:

• The Network Infrastructure is composed of a set of embedded nodes with networking,

storage and computing capabilities. Nodes communicate with each other using a mesh

networking protocol and create a local Internet and edge cloud infrastructure that is

autonomous from any external structure. The edge cloud host edge-based services for

performing various tasks such as IoT management, local data sharing and the

blockchain. Nodes connected with each other recognize being part of the same

network and contributing to the same blockchain through secure authentication.

• Robots, IoT devices and other edge servers can connect to the edge cloud for enjoying

a dedicated networking infrastructure and sharing their data among the edge cloud

and the blockchain.

• The edge cloud can be connected to remote servers and edge clouds operating at

multiple locations for creating the equivalent of a large cloud distributed at the edges.

All equipment is deployed on-premises, at the care facility, rather than on distant clouds for

data sovereignty and service resiliency to Internet shut down.

2.4 Open API

In order to interconnect both internal elements and to give external access to certain services,

it is necessary to define a set of accesses. To do this, a standard must be adopted, so that all

calls are the same and it is easier to add or maintain all services. OpenAPI is the specification

of choice, and we will talk more about it below.

2.4.1 API Documentation
API documentation is essentially the reference manual for an API, it tells API consumers how

to use the API. API documentation is meant for humans, usually developers, to read and

understand. Providing documentation that is well-designed, comprehensive, and easy to

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 32

follow is crucial when it comes to ensuring developers have a great experience with the API.

Also, a great developer experience (DX) means a better chance for API success. Good

documentation also helps decrease the time it takes to onboard new API consumers.

API documentation should provide an example of every call, every parameter, and responses

for each call. It should include code samples for commonly used languages such as Java,

JavaScript, PHP, and Python. Documentation should provide an explanation for each API

request and examples of error messages. It’s also important that API documentation is

actively maintained and always up to date.

2.4.2 API Specification
API specification is a term that is often used interchangeably with API definition. While these

terms have many similarities, they are different entities. An API specification provides a broad

understanding of how an API behaves and how the API links with other APIs. It explains how

the API functions and the results to expect when using the API.

An API specification explains how the API behaves and what to expect from the API. It contains

the list of actions that the API offers, with the definition of the objects, values and parameters

needed to call each method, what REST verbs can be used, and the relationships between

different objects.

2.4.3 API Definition
An API definition is like an API specification that provides an understanding of how an API is

organized and how the API functions. An API definition provides information about how the

API functions, how it links with other APIs, and the expected results in a machine-readable

format. It focuses on defining the API and outlining the structure of the API.

An API definition is often used as a baseline for automated tools. API definitions can be used

to generate API documentation, code samples, and SDKs automatically.

API definitions can also be imported into a mock server for virtual API testing. Among the

many tools for mock server and API testing that allow to import an API definition file are

SoapUI and SwaggerHub.

An API definition can be used to power automated tools that can improve the quality of the

documentation, compile client API libraries or generate unit tests for the API.

2.4.4 API Visualization
For listing the principal services, a visualization tool will be used, in this case Swagger. The API

is defined in a YAML or JSON file, with all the data, like the method, parameter, users, security,

and all the remaining features regarding the API.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 33

Figure 8: OpenAPI YAML example.

The above lines (Figure 8) define the API, but the tools translate it to a human readable

interface.

Figure 9: API Visualization tool (Swagger).

2.4.5 Third party OpenAPI platform elements
Some platform elements already have an OpenAPI specification. These APIs can be used to

connect internal platform elements or to create an API Gateway to give external access to

these HosmartAI services.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 34

2.4.5.1 Jupyterhub OpenAPI

JupytherHub OpenAPI enables the management of users and groups of users. It also can be

used for authorization, service listing and user's notebook servers' management.

Figure 10: JupyterHub OpenAPI.

2.4.5.2 Discourse OpenAPI

Discourse OpenAPI can be used to manage all the discourse info, like creating backups,

creating users, creating posts, sending private messages, uploading files and other actions.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 35

Figure 11: Discourse OpenAPI.

2.4.5.3 Slack OpenAPI

Slack has an OpenAPI that can be used to manage all the information of the web, like creating

users, uploading files, managing chats, approve the use of apps and other actions.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 36

Figure 12: Slack OpenAPI.

2.4.5.4 Acumos OpenAPI

Acumos has an OpenAPI for a module called License Usage Manager (LUM).

This API can be used to manage licence agreements for software elements of the Acumos

platform.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 37

Figure 13: Acumos LUM OpenAPI (YAML).

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 38

Figure 14: Acumos LUM OpenAPI (Swagger).

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 39

3 HosmartAI Architecture Design
As a result of the analysis performed of all the different technical requirements, the outcome

from other tasks and other elements that are considered necessary in the architecture, the

first version of the final architecture can be defined.

3.1 Principal elements

The Following figure (Figure 15) pictures the elements of the HosmartAI platform and the

connection between them. This diagram has been created using collaborative tools in the

HosmartAI Confluence space.

Figure 15: HosmartAI Architecture Diagram.

The principal elements presented in the first version of the final architecture are:

• Docker

• Ansible

• Nginx

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 40

• Acumos

• ROS

• Keycloak

• Consul

3.1.1.1 Docker

Docker is a set of platforms as a service (PaaS) product that use OS-level virtualization to

deliver software in packages called containers. Containers are isolated from one another and

bundle their own software, libraries, and configuration files. They can communicate with each

other through well-defined channels. Because all the containers share the services of a single

operating system kernel, they use fewer resources than virtual machines. [REF-02]

Table 8: Docker requirements.

Hardware elements

1. 64-bit processor

2. > = 4 GB RAM

3. BIOS hardware virtualization support

Software elements

1. Linux OS

2. Docker-compose

3. Python

4. Curl

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 41

Figure 16: Docker infrastructure.

3.1.1.2 Ansible

Ansible is an open-source software provisioning, configuration management, and application-

deployment tool enabling infrastructure as code. It runs on many Unix-like systems, and can

configure both Unix-like systems as well as Microsoft Windows. It includes its own declarative

language to describe system configuration. Ansible is agentless, temporarily connecting

remotely via SSH or Windows Remote Management (allowing remote PowerShell execution)

to do its tasks. [REF-03]

Table 9: Ansible requirements.

Hardware elements

1. 2 GB RAM (4 GB RAM is recommended)

2. 20 GB hard disk space

3. 64-bit support required (kernel and runtime)

Software elements

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 42

1. Linux OS

a. Red Hat Enterprise Linux 6 64-bit

b. Red Hat Enterprise Linux 7 64-bit

c. CentOS 6 64-bit

d. CentOS 7 64-bit

e. Ubuntu 12.04 LTS 64-bit

f. Ubuntu 14.04 LTS 64-bit

2. Windows Server

a. 2012

b. 2016

c. 2019

Figure 17: Ansible infrastructure.

3.1.1.3 Nginx

Nginx is a web server that can also be used as a reverse proxy, load balancer, mail proxy and

HTTP cache. Nginx is free and open-source software, released under the terms of the 2-clause

BSD license. A large fraction of web servers uses NGINX, often as a load balancer. [REF-04]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 43

Table 10: Nginx requirements.

Hardware elements

1. 8 GB RAM

2. CPU: 8-Core CPU @ 2.40 GHz or similar

3. Disk space: 155–255 GB

Software elements

1. Linux OS

2. Database for operate

Figure 18: Nginx infrastructure.

3.1.1.4 Acumos

Acumos AI is a platform and open-source framework that makes it easy to build, share, and

deploy AI apps. Acumos standardizes the infrastructure stack and components required to

run an out-of-the-box general AI environment. This frees data scientists and model trainers

to focus on their core competencies and accelerates innovation. [REF-05]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 44

Table 11: Acumos requirements.

Hardware elements

1. 16GB RAM

2. 100GB disk storage size

3. Open application ports

Software elements

1. Linux OS or Windows OS or Mac OS

2. Curl

Figure 19: Acumos AI platform.

3.1.1.5 ROS

Robot Operating System is an open-source robotics middleware suite. Although ROS is not an

operating system but a collection of software frameworks for robot software development,

it provides services designed for a heterogeneous computer cluster such as hardware

abstraction, low-level device control, implementation of commonly used functionality,

message-passing between processes, and package management. Despite the importance of

reactivity and low latency in robot control, ROS itself is not a real-time OS (RTOS). It is possible,

however, to integrate ROS with real-time code. [REF-06]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 45

Table 12: ROS requirements.

Hardware elements

1. Robot for running the OS

Software elements

1. Linux OS

2. Access to repositories to allow all type of libraries

3.1.1.6 Keycloak

Keycloak is an open-source software product that enables single sign-on (IdP) with Identity

Management and Access Management for modern applications and services. This software is

written in Java and supports by default the SAML v2 and OpenID Connect (OIDC) / OAuth2

identity federation protocols.

From a conceptual perspective, the intention of the tool is to facilitate the protection of

applications and services with little or no encryption. An IdP allows an application (often

called a Service Provider or SP) to delegate its authentication. [REF-07]

Table 13: Keycloak requirements.

Hardware elements

1. 512M of RAM

2. 1GB of disk space

Software elements

1. Java 8 JDK

2. zip or gzip and tar

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 46

Figure 20: Keycloak data flow.

3.1.1.7 Consul

Consul is a networking tool that provides a fully featured service mesh and service discovery

[REF-08].

Table 14: Consul requirements.

Hardware elements

1. 2-4 core

2. 8-16 GB RAM

3. 100+ GB disk space

Software elements

1. Linux OS or Windows OS

2. Curl on Linux

3. Chocolatey on Windows

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 47

Figure 21: Consul infrastructure.

3.2 HHub

The main tools used for the development of the HHub (HosmartAI Hub) are listed below.

These tools will manage the content displayed in the marketplace, the correct continuous

integration and development in the Co-creation hub and measure the quality and

performance of the system and its applications through benchmarking tools.

3.2.1 Marketplace
The marketplace will implement the project’s repository displaying its main results in terms

of selected AI-applications, relevant data and services, including e.g., provider details, main

features and integration constraints.

3.2.1.1 Drupal

Table 15: Drupal requirements.

Hardware elements

1. 60 MB disk storage size

Software elements

1. MySQL, MariaDB, or Percona Server

2. Nginx

3. PHP 5.2.5 or higher

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 48

3.2.2 Co-creation Hub
The Co-creation Hub is a group of components used for the development and creation of new

HosmartAI solutions. It is composed of 2 main sets of elements: one of them is dedicated to

the co-creation tools and the other to the continuous integration and development.

For the Co-Creation tools we have the following components:

• .Net Blazor

• Discourse

3.2.2.1 NET Blazor

Blazor is a framework for creating interactive client-side web user interfaces with .NET, using

C# instead of JavaScript. It can run client-side C# code directly in the browser using

WebAssembly. This allows for code and libraries in C# to be shared between the server-side

and the client-side parts of the application. [REF-09]

Table 16: .NET Blazor requirements.

Hardware elements

1. Dedicated space for storage

Software elements

1. Visual Studio

2. .NET 6.0 SDK

3.2.2.2 Discourse

Discourse is an open-source Internet forum and mailing list management software

application. The application is written with Ember.js and Ruby on Rails. PostgreSQL serves as

its back-end database management system. From a usability perspective, Discourse breaks

with existing forum software by including features recently popularized by large social

networks, such as infinite scrolling, live updates, expanding links, and drag and drop

attachments. The source code is distributed under the GNU General Public License version 2.

Therefore, Discourse can be self-hosted by anyone. [REF-10]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 49

Table 17: Discourse requirements.

Hardware elements

1. 10 GB of free disk space.

2. Single-core CPU.

3. 64-bit processor

4. 1 GB RAM.

Software elements

1. Linux OS

2. Docker

For continuous integration and development, the following tools will be used:

• JFrog Artifactory

• Slack

• SonarQube

• Jenkins

3.2.2.3 JFrog Artifactory

As the world’s first universal repository, JFrog Artifactory is the mission-critical heart of the

JFrog Platform functioning as the single source of truth for all packages, container images and

Helm charts, as they move across the entire DevOps pipeline. [REF-11]

Table 18: JFrog Artifactory requirements.

Hardware elements

1. 4-core CPU

2. 4GB RAM

3. SAN backup recommended

Software elements

1. Linux OS or Windows OS

2. Java

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 50

Figure 22: JFrog Artifactory Infrastructure.

3.2.2.4 Slack

Slack is a proprietary business communication platform. Slack offers many IRC-style features,

including persistent chat rooms (channels) organized by topic, private groups, and direct

messaging. [REF-12]

Table 19: Slack requirements.

Hardware elements

1. Dedicated space for storage

Software elements

1. Linux OS or Windows OS or Mac OS

3.2.2.5 SonarQube

SonarQube is an open-source platform for continuous inspection of code quality to perform

automatic reviews with static analysis of code to detect bugs, code smells, and security

vulnerabilities on many programming languages. SonarQube offers reports on duplicated

code, coding standards, unit tests, code coverage, code complexity, comments, bugs, and

security vulnerabilities. Also, can record metrics history and provides evolution graphs.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 51

SonarQube provides fully automated analysis and integration with Maven, Ant, Gradle,

MSBuild and continuous integration tools (Atlassian Bamboo, Jenkins, Hudson, etc.). [REF-13]

Table 20: SonarQube requirements.

Hardware elements

1. 2GB RAM

2. 64-bit CPU

Software elements

1. API Connection to retrieve and analyse the code

2. Java

3. Linux OS or Windows OS

Figure 23: SonarQube Infrastructure Pipeline.

3.2.2.6 Jenkins

Jenkins is an open-source automation server. It helps automate the parts of software

development related to building, testing, and deploying, facilitating continuous integration

and continuous delivery. It is a server-based system that runs in servlet containers such as

Apache Tomcat. It supports version control tools, including AccuRev, CVS, Subversion, Git,

Mercurial, Perforce, ClearCase and RTC, and can execute Apache Ant, Apache Maven and sbt

based projects as well as arbitrary shell scripts and Windows batch commands. [REF-14]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 52

Table 21: Jenkins requirements.

Hardware elements

1. 256 MB RAM (4GB recommended)

2. 1 GB of drive space (50GB recommended)

Software elements

1. Linux OS

Figure 24: Jenkins Pipeline.

3.2.3 Benchmarking
Benchmarking is made up of a series of proprietary libraries that will be developed for this

specific purpose. These libraries will be developed in Python and will use a series of databases

to store data for later use. At the same time, Kafka will be used for the flow of information

between components.

3.2.3.1 Python Benchmarking libraries

This part of the architecture brings all the libraries written in Python to perform all the desired

actions.

Table 22: Python Benchmarking libraries requirements.

Hardware elements

1. Dedicated space for storage

2. Ports for communication

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 53

Hardware elements

Software elements

1. Python environment

2. Third-party libraries

3.2.3.2 Benchmarking database driver

Driver necessary for storage all the information relative to benchmarking and all its process.

Table 23: Benchmarking database driver requirements.

Hardware elements

1. Dedicated space for storage

2. Ports for communication

Software elements

1. Specific Driver

3.2.3.3 JupyterHub

JupytherHub is a multi-user Hub that spawns, manages, and proxies multiple instances of

single-user Jupyter notebook servers, giving each user their own isolated environment.

JupyterHub is used as a user interface for Benchmarking. Custom Python libraries can be

imported to access and operate with the Benchmarking data. [REF-15]

Table 24: JupytherHub requirements.

Hardware elements

1. Dedicated space for storage

Software elements

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 54

Hardware elements

1. Linux OS

2. Python 3.6 or greater

3. TLS certificate and key for HTTPS communication

Figure 25: JupyterHub infrastructure.

3.2.3.4 Kafka

Apache Kafka is a framework implementation of a software bus using stream-processing. The

project aims to provide a unified, high-throughput, low-latency platform for handling real-

time data feeds. Kafka can connect to external systems (for data import/export) via Kafka

Connect and provides Kafka Streams, a Java stream processing library. Kafka uses a binary

TCP-based protocol that is optimized for efficiency and relies on a "message set" abstraction

that naturally groups messages together to reduce the overhead of the network roundtrip.

[REF-16]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 55

Table 25: Kafka requirements.

Hardware elements

1. 8 GB RAM

2. 4 CPU cores

3. 500 GB disk storage size

4. Network 1 GbE-10 GbE

Software elements

1. Apache Kafka 2.3.1-0

2. Apache Zookeeper 3.4.14

3. Java 1.8 or later

Figure 26: Kafka infrastructure.

3.2.3.5 MongoDB

MongoDB is a source-available cross-platform document-oriented database program.

Classified as a NoSQL database program, MongoDB uses JSON-like documents with optional

schemas. [REF-17]

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 56

Table 26: MongoDB requirements.

Hardware elements

1. Dynamic space for storage

2. 1GB of RAM

Software elements

1. Linux OS or MacOS or Windows OS

3.2.4 Dashboard
The dashboard is responsible for displaying all information to HosmartAI users. This

information will be presented on a website, and for that reason Angular will be used for its

development.

3.2.4.1 Angular

Angular is a TypeScript-based free and open-source web application framework led by the

Angular Team at Google and by a community of individuals and corporations. Angular is a

complete rewrite from the same team that built AngularJS. Angular is used as the frontend of

the MEAN stack, consisting of MongoDB database, Express.js web application server

framework, Angular itself (or AngularJS), and Node.js server runtime environment. [REF-18]

Table 27: Angular requirements.

Hardware elements

1. Dedicated space for storage

Software elements

1. NodeJS

2. NPM Package Manager

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 57

4 Conclusion
After an exhaustive review of all the elements that make up the architecture, it can be

determined that powerful hardware and a large amount of disk storage space will be needed

to house the large number of tools that the HosmartAI system requires.

To this end, the operating system on which the entire architecture will be based will be Linux,

with the CentOS 7 distribution being chosen for the deployment of most of the tools.

Exceptions may be made for tools that are not compatible, with Ubuntu being deployed for

this specific task.

The main elements of the Artificial Intelligence part will be JupyterHub and Acumos.

JupyterHub will be used for the management of libraries, while Acumos will be more oriented

to the management of data models.

For the Blockchain section, a node will be deployed on the platform with an integrated NGINX

module, in order to be able to exchange data in a secure and orderly way.

All the APIs needed within the system will be defined under the OpenAPI standard, being

Swagger the default editor and viewer for this part.

For the correct access of the users to the system, NGINX will be used to carry out the

redirections, and Keycloak together with an additional database to manage the users and

their permissions.

The main element that will manage all the contents related to the Marketplace will be Drupal

and the set of tools that will act within the co-creation space for the management of

development and continuous integration, as well as knowledge management, has already

been defined.

Kafka will be in charge of managing all the information flow and propagating it to the elements

that need it.

Finally, the benchmarking section has defined a series of elements, which interconnected in

a concrete way will play the role of evaluation of all the necessary tools and applications.

This document has defined the first version of this complex system, resulting in a solid,

efficient architecture with the necessary elements to begin to support the whole system,

leaving open the possibility of evolution in the future, as new applications and needs appear.

D4.1 – Platform Architecture Design and Open APIs
H2020 Contract No 101016834 Final – v1.0, 2022-01-31

Dissemination level: PU -Public Page 58

5 References

[REF-01] WebAssembly introduction. (Accessed on 20/01/2022)
https://webassembly.github.io/spec/core/intro/introduction.html

[REF-02] Docker, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Docker_(software)

[REF-03] Ansible, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Ansible_(software)

[REF-04] Nginx, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Nginx

[REF-05] Acumos website. (Accessed on 20/01/2022)
https://www.acumos.org/

[REF-06] ROS(Robot Operating System), Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Robot_Operating_System

[REF-07] Desde Linux. Keycloak: an open source identity and access management
solution. (Accessed on 20/01/2022)
https://blog.desdelinux.net/en/keycloak-an-open-source-identity-and-
access-management-solution/

[REF-08] Consul, Hashicorp. (Accessed on 20/01/2022)
https://learn.hashicorp.com/collections/consul/getting-started

[REF-09] Blazor, Microsoft. (Accessed on 20/01/2022)
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

[REF-10] Discourse, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Discourse_(software)

[REF-11] JFrog, Opsera. (Accessed on 20/01/2022)
https://www.opsera.io/ecosystem/jfrog

[REF-12] Slack, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Slack_(software)

[REF-13] SonarQube, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/SonarQube

[REF-14] Jenkins, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Jenkins_(software)

[REF-15] Jypyterhub documentation. (Accessed on 20/01/2022)
https://jupyterhub.readthedocs.io/en/stable/

[REF-16] Kafka, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Apache_Kafka

[REF-17] MongoDB, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/MongoDB

[REF-18] Angular, Wikipedia. (Accessed on 20/01/2022)
https://en.wikipedia.org/wiki/Angular_(web_framework)

https://webassembly.github.io/spec/core/intro/introduction.html
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Ansible_(software)
https://en.wikipedia.org/wiki/Nginx
https://www.acumos.org/
https://en.wikipedia.org/wiki/Robot_Operating_System
https://blog.desdelinux.net/en/keycloak-an-open-source-identity-and-access-management-solution/
https://blog.desdelinux.net/en/keycloak-an-open-source-identity-and-access-management-solution/
https://learn.hashicorp.com/collections/consul/getting-started
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://en.wikipedia.org/wiki/Discourse_(software)
https://www.opsera.io/ecosystem/jfrog
https://en.wikipedia.org/wiki/Slack_(software)
https://en.wikipedia.org/wiki/SonarQube
https://en.wikipedia.org/wiki/Jenkins_(software)
https://jupyterhub.readthedocs.io/en/stable/
https://en.wikipedia.org/wiki/Apache_Kafka
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Angular_(web_framework)

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Definitions, Acronyms and Abbreviations
	1 Introduction
	1.1 Project Information
	1.2 Document Scope
	1.3 Document Structure

	2 Requirement’s analysis
	2.1 Platform requirements
	2.1.1 Introduction
	2.1.1.1 Application layer
	2.1.1.1.1 Marketplace
	2.1.1.1.2 Co-creation
	2.1.1.1.3 Dashboard
	2.1.1.1.4 Application solutions

	2.1.1.2 AI Services
	2.1.1.2.1 Benchmarking
	2.1.1.2.2 Artificial Intelligence and Visualization
	2.1.1.2.3 Data Management and Knowledge Sharing

	2.1.1.3 AI Platform core components
	2.1.1.4 Infrastructure layer
	2.1.1.4.1 Computing, Connectivity and Storage

	2.1.2 AI Software integration
	2.1.3 Blockchain integration
	2.1.3.1 Technology definition
	2.1.3.2 Preferred network for the project
	2.1.3.3 Added value of working with blockchain

	2.1.4 The HosmartAI Frontend
	2.1.4.1 Presentation - UI/UX requirements for the platform to fulfil the user needs
	2.1.4.2 Security
	2.1.4.3 Adaptability

	2.1.5 Data integration
	2.1.5.1 HL7
	2.1.5.2 Image/genome data integration.

	2.2 Data security and privacy
	2.2.1 Security requirements
	2.2.2 Data protection methods
	2.2.2.1 Audit on data and infrastructures
	2.2.2.1.1 Methods and Tools
	2.2.2.1.2 Applicability to platform components

	2.2.2.2 Data selection
	2.2.2.2.1 Methods and Tools
	2.2.2.2.2 Applicability to platform components

	2.2.2.3 Data verification
	2.2.2.3.1 Methods and Tools
	2.2.2.3.2 Applicability to platform components

	2.2.2.4 Authentication and access control
	2.2.2.4.1 Methods and Tools
	2.2.2.4.2 Applicability to platform components

	2.2.2.5 Event Management
	2.2.2.5.1 Methods and Tools
	2.2.2.5.2 Applicability to platform components

	2.2.3 Traceability of the information
	2.2.3.1 Methods and Tools
	2.2.3.2 Applicability to platform components

	2.3 Edge Cloud
	2.4 Open API
	2.4.1 API Documentation
	2.4.2 API Specification
	2.4.3 API Definition
	2.4.4 API Visualization
	2.4.5 Third party OpenAPI platform elements
	2.4.5.1 Jupyterhub OpenAPI
	2.4.5.2 Discourse OpenAPI
	2.4.5.3 Slack OpenAPI
	2.4.5.4 Acumos OpenAPI

	3 HosmartAI Architecture Design
	3.1 Principal elements
	3.1.1.1 Docker
	3.1.1.2 Ansible
	3.1.1.3 Nginx
	3.1.1.4 Acumos
	3.1.1.5 ROS
	3.1.1.6 Keycloak
	3.1.1.7 Consul

	3.2 HHub
	3.2.1 Marketplace
	3.2.1.1 Drupal

	3.2.2 Co-creation Hub
	3.2.2.1 NET Blazor
	3.2.2.2 Discourse
	3.2.2.3 JFrog Artifactory
	3.2.2.4 Slack
	3.2.2.5 SonarQube
	3.2.2.6 Jenkins

	3.2.3 Benchmarking
	3.2.3.1 Python Benchmarking libraries
	3.2.3.2 Benchmarking database driver
	3.2.3.3 JupyterHub
	3.2.3.4 Kafka
	3.2.3.5 MongoDB

	3.2.4 Dashboard
	3.2.4.1 Angular

	4 Conclusion
	5 References

